Variational Bayesian Inference for Parametric and Nonparametric Regression With Missing Data

Bayesian hierarchical models are attractive structures for conducting regression analyses when the data are subject to missingness. However, the requisite probability calculus is challenging and Monte Carlo methods typically are employed. We develop an alternative approach based on deterministic var...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Statistical Association 2011-09, Vol.106 (495), p.959-971
Hauptverfasser: Faes, C., Ormerod, J. T., Wand, M. P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Bayesian hierarchical models are attractive structures for conducting regression analyses when the data are subject to missingness. However, the requisite probability calculus is challenging and Monte Carlo methods typically are employed. We develop an alternative approach based on deterministic variational Bayes approximations. Both parametric and nonparametric regression are considered. Attention is restricted to the more challenging case of missing predictor data. We demonstrate that variational Bayes can achieve good accuracy, but with considerably less computational overhead. The main ramification is fast approximate Bayesian inference in parametric and nonparametric regression models with missing data. Supplemental materials accompany the online version of this article.
ISSN:0162-1459
1537-274X
DOI:10.1198/jasa.2011.tm10301