Accounting for Model Uncertainty in Seemingly Unrelated Regressions

This article considers inference in a Bayesian seemingly unrelated regression (SUR) model where the set of regressors is assumed unknown a priori. That is, we allow for uncertainty in the covariate set by defining a prior distribution on the model space. The posterior inference is analytically intra...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational and graphical statistics 2002-09, Vol.11 (3), p.533-551
Hauptverfasser: Holmes, C. C, Denison, D. G. T, Mallick, B. K
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 551
container_issue 3
container_start_page 533
container_title Journal of computational and graphical statistics
container_volume 11
creator Holmes, C. C
Denison, D. G. T
Mallick, B. K
description This article considers inference in a Bayesian seemingly unrelated regression (SUR) model where the set of regressors is assumed unknown a priori. That is, we allow for uncertainty in the covariate set by defining a prior distribution on the model space. The posterior inference is analytically intractable and we adopt computer-intensive simulation using variable dimension Markov chain Monte Carlo algorithms to approximate quantities of interest. Applications are given for vector autoregression (VAR) models of unknown order and multivariate spline models with unknown knot points.
doi_str_mv 10.1198/106186002475
format Article
fullrecord <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1198_106186002475</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>1391112</jstor_id><sourcerecordid>1391112</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-e50cff7d317cf6d16a2a4d328794b3a2449412697ab1855a62980b5b7387958f3</originalsourceid><addsrcrecordid>eNptkE1LAzEQhoMoWKs3jx72B7iaSTYfeyzFL6gIas9LNpuUlG0iSUT235tSQQ-eZuB5eJl5EboEfAPQylvAHCTHmDSCHaEZMCpqIoAdl72ges9O0VlKW4wx8FbM0HKhdfj02flNZUOsnsNgxmrttYlZOZ-nyvnqzZhdEcapgGhGlc1QvZpNNCm54NM5OrFqTObiZ87R-v7ufflYr14enpaLVa0pl7k2DGtrxUBBaMsH4IqoZqBEirbpqSJN0zZAylWqB8mY4qSVuGe9oMVg0tI5uj7k6hhSisZ2H9HtVJw6wN2-gO5vAUW_OujblEP8dWkLAKRgccDOl8d36ivEceiymsYQbVReu9TRf4O_ASuCZ9A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Accounting for Model Uncertainty in Seemingly Unrelated Regressions</title><source>JSTOR Mathematics &amp; Statistics</source><source>Jstor Complete Legacy</source><creator>Holmes, C. C ; Denison, D. G. T ; Mallick, B. K</creator><creatorcontrib>Holmes, C. C ; Denison, D. G. T ; Mallick, B. K</creatorcontrib><description>This article considers inference in a Bayesian seemingly unrelated regression (SUR) model where the set of regressors is assumed unknown a priori. That is, we allow for uncertainty in the covariate set by defining a prior distribution on the model space. The posterior inference is analytically intractable and we adopt computer-intensive simulation using variable dimension Markov chain Monte Carlo algorithms to approximate quantities of interest. Applications are given for vector autoregression (VAR) models of unknown order and multivariate spline models with unknown knot points.</description><identifier>ISSN: 1061-8600</identifier><identifier>EISSN: 1537-2715</identifier><identifier>DOI: 10.1198/106186002475</identifier><language>eng</language><publisher>Taylor &amp; Francis</publisher><subject>Bayesian model choice ; Curve fitting ; Data smoothing ; Datasets ; Linear regression ; Markov chain Monte Carlo ; Markov chains ; Modeling ; Multivariate regression ; Parametric models ; Regression analysis ; Time series models ; Vector autoregression</subject><ispartof>Journal of computational and graphical statistics, 2002-09, Vol.11 (3), p.533-551</ispartof><rights>American Statistical Association, Institute of Mathematical Statistics, and Interface Foundation of North America 2002</rights><rights>Copyright 2002 American Statistical Association, Institute of Mathematical Statistics, and Interface Foundation of North America</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-e50cff7d317cf6d16a2a4d328794b3a2449412697ab1855a62980b5b7387958f3</citedby><cites>FETCH-LOGICAL-c368t-e50cff7d317cf6d16a2a4d328794b3a2449412697ab1855a62980b5b7387958f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/1391112$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/1391112$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,828,27903,27904,57995,57999,58228,58232</link.rule.ids></links><search><creatorcontrib>Holmes, C. C</creatorcontrib><creatorcontrib>Denison, D. G. T</creatorcontrib><creatorcontrib>Mallick, B. K</creatorcontrib><title>Accounting for Model Uncertainty in Seemingly Unrelated Regressions</title><title>Journal of computational and graphical statistics</title><description>This article considers inference in a Bayesian seemingly unrelated regression (SUR) model where the set of regressors is assumed unknown a priori. That is, we allow for uncertainty in the covariate set by defining a prior distribution on the model space. The posterior inference is analytically intractable and we adopt computer-intensive simulation using variable dimension Markov chain Monte Carlo algorithms to approximate quantities of interest. Applications are given for vector autoregression (VAR) models of unknown order and multivariate spline models with unknown knot points.</description><subject>Bayesian model choice</subject><subject>Curve fitting</subject><subject>Data smoothing</subject><subject>Datasets</subject><subject>Linear regression</subject><subject>Markov chain Monte Carlo</subject><subject>Markov chains</subject><subject>Modeling</subject><subject>Multivariate regression</subject><subject>Parametric models</subject><subject>Regression analysis</subject><subject>Time series models</subject><subject>Vector autoregression</subject><issn>1061-8600</issn><issn>1537-2715</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><recordid>eNptkE1LAzEQhoMoWKs3jx72B7iaSTYfeyzFL6gIas9LNpuUlG0iSUT235tSQQ-eZuB5eJl5EboEfAPQylvAHCTHmDSCHaEZMCpqIoAdl72ges9O0VlKW4wx8FbM0HKhdfj02flNZUOsnsNgxmrttYlZOZ-nyvnqzZhdEcapgGhGlc1QvZpNNCm54NM5OrFqTObiZ87R-v7ufflYr14enpaLVa0pl7k2DGtrxUBBaMsH4IqoZqBEirbpqSJN0zZAylWqB8mY4qSVuGe9oMVg0tI5uj7k6hhSisZ2H9HtVJw6wN2-gO5vAUW_OujblEP8dWkLAKRgccDOl8d36ivEceiymsYQbVReu9TRf4O_ASuCZ9A</recordid><startdate>20020901</startdate><enddate>20020901</enddate><creator>Holmes, C. C</creator><creator>Denison, D. G. T</creator><creator>Mallick, B. K</creator><general>Taylor &amp; Francis</general><general>American Statistical Association, Institute of Mathematical Statistics, and Interface Foundation of North America</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20020901</creationdate><title>Accounting for Model Uncertainty in Seemingly Unrelated Regressions</title><author>Holmes, C. C ; Denison, D. G. T ; Mallick, B. K</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-e50cff7d317cf6d16a2a4d328794b3a2449412697ab1855a62980b5b7387958f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Bayesian model choice</topic><topic>Curve fitting</topic><topic>Data smoothing</topic><topic>Datasets</topic><topic>Linear regression</topic><topic>Markov chain Monte Carlo</topic><topic>Markov chains</topic><topic>Modeling</topic><topic>Multivariate regression</topic><topic>Parametric models</topic><topic>Regression analysis</topic><topic>Time series models</topic><topic>Vector autoregression</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Holmes, C. C</creatorcontrib><creatorcontrib>Denison, D. G. T</creatorcontrib><creatorcontrib>Mallick, B. K</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of computational and graphical statistics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Holmes, C. C</au><au>Denison, D. G. T</au><au>Mallick, B. K</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Accounting for Model Uncertainty in Seemingly Unrelated Regressions</atitle><jtitle>Journal of computational and graphical statistics</jtitle><date>2002-09-01</date><risdate>2002</risdate><volume>11</volume><issue>3</issue><spage>533</spage><epage>551</epage><pages>533-551</pages><issn>1061-8600</issn><eissn>1537-2715</eissn><abstract>This article considers inference in a Bayesian seemingly unrelated regression (SUR) model where the set of regressors is assumed unknown a priori. That is, we allow for uncertainty in the covariate set by defining a prior distribution on the model space. The posterior inference is analytically intractable and we adopt computer-intensive simulation using variable dimension Markov chain Monte Carlo algorithms to approximate quantities of interest. Applications are given for vector autoregression (VAR) models of unknown order and multivariate spline models with unknown knot points.</abstract><pub>Taylor &amp; Francis</pub><doi>10.1198/106186002475</doi><tpages>19</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1061-8600
ispartof Journal of computational and graphical statistics, 2002-09, Vol.11 (3), p.533-551
issn 1061-8600
1537-2715
language eng
recordid cdi_crossref_primary_10_1198_106186002475
source JSTOR Mathematics & Statistics; Jstor Complete Legacy
subjects Bayesian model choice
Curve fitting
Data smoothing
Datasets
Linear regression
Markov chain Monte Carlo
Markov chains
Modeling
Multivariate regression
Parametric models
Regression analysis
Time series models
Vector autoregression
title Accounting for Model Uncertainty in Seemingly Unrelated Regressions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T19%3A31%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Accounting%20for%20Model%20Uncertainty%20in%20Seemingly%20Unrelated%20Regressions&rft.jtitle=Journal%20of%20computational%20and%20graphical%20statistics&rft.au=Holmes,%20C.%20C&rft.date=2002-09-01&rft.volume=11&rft.issue=3&rft.spage=533&rft.epage=551&rft.pages=533-551&rft.issn=1061-8600&rft.eissn=1537-2715&rft_id=info:doi/10.1198/106186002475&rft_dat=%3Cjstor_cross%3E1391112%3C/jstor_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=1391112&rfr_iscdi=true