Accounting for Model Uncertainty in Seemingly Unrelated Regressions
This article considers inference in a Bayesian seemingly unrelated regression (SUR) model where the set of regressors is assumed unknown a priori. That is, we allow for uncertainty in the covariate set by defining a prior distribution on the model space. The posterior inference is analytically intra...
Gespeichert in:
Veröffentlicht in: | Journal of computational and graphical statistics 2002-09, Vol.11 (3), p.533-551 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 551 |
---|---|
container_issue | 3 |
container_start_page | 533 |
container_title | Journal of computational and graphical statistics |
container_volume | 11 |
creator | Holmes, C. C Denison, D. G. T Mallick, B. K |
description | This article considers inference in a Bayesian seemingly unrelated regression (SUR) model where the set of regressors is assumed unknown a priori. That is, we allow for uncertainty in the covariate set by defining a prior distribution on the model space. The posterior inference is analytically intractable and we adopt computer-intensive simulation using variable dimension Markov chain Monte Carlo algorithms to approximate quantities of interest. Applications are given for vector autoregression (VAR) models of unknown order and multivariate spline models with unknown knot points. |
doi_str_mv | 10.1198/106186002475 |
format | Article |
fullrecord | <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1198_106186002475</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>1391112</jstor_id><sourcerecordid>1391112</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-e50cff7d317cf6d16a2a4d328794b3a2449412697ab1855a62980b5b7387958f3</originalsourceid><addsrcrecordid>eNptkE1LAzEQhoMoWKs3jx72B7iaSTYfeyzFL6gIas9LNpuUlG0iSUT235tSQQ-eZuB5eJl5EboEfAPQylvAHCTHmDSCHaEZMCpqIoAdl72ges9O0VlKW4wx8FbM0HKhdfj02flNZUOsnsNgxmrttYlZOZ-nyvnqzZhdEcapgGhGlc1QvZpNNCm54NM5OrFqTObiZ87R-v7ufflYr14enpaLVa0pl7k2DGtrxUBBaMsH4IqoZqBEirbpqSJN0zZAylWqB8mY4qSVuGe9oMVg0tI5uj7k6hhSisZ2H9HtVJw6wN2-gO5vAUW_OujblEP8dWkLAKRgccDOl8d36ivEceiymsYQbVReu9TRf4O_ASuCZ9A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Accounting for Model Uncertainty in Seemingly Unrelated Regressions</title><source>JSTOR Mathematics & Statistics</source><source>Jstor Complete Legacy</source><creator>Holmes, C. C ; Denison, D. G. T ; Mallick, B. K</creator><creatorcontrib>Holmes, C. C ; Denison, D. G. T ; Mallick, B. K</creatorcontrib><description>This article considers inference in a Bayesian seemingly unrelated regression (SUR) model where the set of regressors is assumed unknown a priori. That is, we allow for uncertainty in the covariate set by defining a prior distribution on the model space. The posterior inference is analytically intractable and we adopt computer-intensive simulation using variable dimension Markov chain Monte Carlo algorithms to approximate quantities of interest. Applications are given for vector autoregression (VAR) models of unknown order and multivariate spline models with unknown knot points.</description><identifier>ISSN: 1061-8600</identifier><identifier>EISSN: 1537-2715</identifier><identifier>DOI: 10.1198/106186002475</identifier><language>eng</language><publisher>Taylor & Francis</publisher><subject>Bayesian model choice ; Curve fitting ; Data smoothing ; Datasets ; Linear regression ; Markov chain Monte Carlo ; Markov chains ; Modeling ; Multivariate regression ; Parametric models ; Regression analysis ; Time series models ; Vector autoregression</subject><ispartof>Journal of computational and graphical statistics, 2002-09, Vol.11 (3), p.533-551</ispartof><rights>American Statistical Association, Institute of Mathematical Statistics, and Interface Foundation of North America 2002</rights><rights>Copyright 2002 American Statistical Association, Institute of Mathematical Statistics, and Interface Foundation of North America</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-e50cff7d317cf6d16a2a4d328794b3a2449412697ab1855a62980b5b7387958f3</citedby><cites>FETCH-LOGICAL-c368t-e50cff7d317cf6d16a2a4d328794b3a2449412697ab1855a62980b5b7387958f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/1391112$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/1391112$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,828,27903,27904,57995,57999,58228,58232</link.rule.ids></links><search><creatorcontrib>Holmes, C. C</creatorcontrib><creatorcontrib>Denison, D. G. T</creatorcontrib><creatorcontrib>Mallick, B. K</creatorcontrib><title>Accounting for Model Uncertainty in Seemingly Unrelated Regressions</title><title>Journal of computational and graphical statistics</title><description>This article considers inference in a Bayesian seemingly unrelated regression (SUR) model where the set of regressors is assumed unknown a priori. That is, we allow for uncertainty in the covariate set by defining a prior distribution on the model space. The posterior inference is analytically intractable and we adopt computer-intensive simulation using variable dimension Markov chain Monte Carlo algorithms to approximate quantities of interest. Applications are given for vector autoregression (VAR) models of unknown order and multivariate spline models with unknown knot points.</description><subject>Bayesian model choice</subject><subject>Curve fitting</subject><subject>Data smoothing</subject><subject>Datasets</subject><subject>Linear regression</subject><subject>Markov chain Monte Carlo</subject><subject>Markov chains</subject><subject>Modeling</subject><subject>Multivariate regression</subject><subject>Parametric models</subject><subject>Regression analysis</subject><subject>Time series models</subject><subject>Vector autoregression</subject><issn>1061-8600</issn><issn>1537-2715</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><recordid>eNptkE1LAzEQhoMoWKs3jx72B7iaSTYfeyzFL6gIas9LNpuUlG0iSUT235tSQQ-eZuB5eJl5EboEfAPQylvAHCTHmDSCHaEZMCpqIoAdl72ges9O0VlKW4wx8FbM0HKhdfj02flNZUOsnsNgxmrttYlZOZ-nyvnqzZhdEcapgGhGlc1QvZpNNCm54NM5OrFqTObiZ87R-v7ufflYr14enpaLVa0pl7k2DGtrxUBBaMsH4IqoZqBEirbpqSJN0zZAylWqB8mY4qSVuGe9oMVg0tI5uj7k6hhSisZ2H9HtVJw6wN2-gO5vAUW_OujblEP8dWkLAKRgccDOl8d36ivEceiymsYQbVReu9TRf4O_ASuCZ9A</recordid><startdate>20020901</startdate><enddate>20020901</enddate><creator>Holmes, C. C</creator><creator>Denison, D. G. T</creator><creator>Mallick, B. K</creator><general>Taylor & Francis</general><general>American Statistical Association, Institute of Mathematical Statistics, and Interface Foundation of North America</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20020901</creationdate><title>Accounting for Model Uncertainty in Seemingly Unrelated Regressions</title><author>Holmes, C. C ; Denison, D. G. T ; Mallick, B. K</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-e50cff7d317cf6d16a2a4d328794b3a2449412697ab1855a62980b5b7387958f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Bayesian model choice</topic><topic>Curve fitting</topic><topic>Data smoothing</topic><topic>Datasets</topic><topic>Linear regression</topic><topic>Markov chain Monte Carlo</topic><topic>Markov chains</topic><topic>Modeling</topic><topic>Multivariate regression</topic><topic>Parametric models</topic><topic>Regression analysis</topic><topic>Time series models</topic><topic>Vector autoregression</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Holmes, C. C</creatorcontrib><creatorcontrib>Denison, D. G. T</creatorcontrib><creatorcontrib>Mallick, B. K</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of computational and graphical statistics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Holmes, C. C</au><au>Denison, D. G. T</au><au>Mallick, B. K</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Accounting for Model Uncertainty in Seemingly Unrelated Regressions</atitle><jtitle>Journal of computational and graphical statistics</jtitle><date>2002-09-01</date><risdate>2002</risdate><volume>11</volume><issue>3</issue><spage>533</spage><epage>551</epage><pages>533-551</pages><issn>1061-8600</issn><eissn>1537-2715</eissn><abstract>This article considers inference in a Bayesian seemingly unrelated regression (SUR) model where the set of regressors is assumed unknown a priori. That is, we allow for uncertainty in the covariate set by defining a prior distribution on the model space. The posterior inference is analytically intractable and we adopt computer-intensive simulation using variable dimension Markov chain Monte Carlo algorithms to approximate quantities of interest. Applications are given for vector autoregression (VAR) models of unknown order and multivariate spline models with unknown knot points.</abstract><pub>Taylor & Francis</pub><doi>10.1198/106186002475</doi><tpages>19</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1061-8600 |
ispartof | Journal of computational and graphical statistics, 2002-09, Vol.11 (3), p.533-551 |
issn | 1061-8600 1537-2715 |
language | eng |
recordid | cdi_crossref_primary_10_1198_106186002475 |
source | JSTOR Mathematics & Statistics; Jstor Complete Legacy |
subjects | Bayesian model choice Curve fitting Data smoothing Datasets Linear regression Markov chain Monte Carlo Markov chains Modeling Multivariate regression Parametric models Regression analysis Time series models Vector autoregression |
title | Accounting for Model Uncertainty in Seemingly Unrelated Regressions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T19%3A31%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Accounting%20for%20Model%20Uncertainty%20in%20Seemingly%20Unrelated%20Regressions&rft.jtitle=Journal%20of%20computational%20and%20graphical%20statistics&rft.au=Holmes,%20C.%20C&rft.date=2002-09-01&rft.volume=11&rft.issue=3&rft.spage=533&rft.epage=551&rft.pages=533-551&rft.issn=1061-8600&rft.eissn=1537-2715&rft_id=info:doi/10.1198/106186002475&rft_dat=%3Cjstor_cross%3E1391112%3C/jstor_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=1391112&rfr_iscdi=true |