Accounting for Model Uncertainty in Seemingly Unrelated Regressions

This article considers inference in a Bayesian seemingly unrelated regression (SUR) model where the set of regressors is assumed unknown a priori. That is, we allow for uncertainty in the covariate set by defining a prior distribution on the model space. The posterior inference is analytically intra...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational and graphical statistics 2002-09, Vol.11 (3), p.533-551
Hauptverfasser: Holmes, C. C, Denison, D. G. T, Mallick, B. K
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This article considers inference in a Bayesian seemingly unrelated regression (SUR) model where the set of regressors is assumed unknown a priori. That is, we allow for uncertainty in the covariate set by defining a prior distribution on the model space. The posterior inference is analytically intractable and we adopt computer-intensive simulation using variable dimension Markov chain Monte Carlo algorithms to approximate quantities of interest. Applications are given for vector autoregression (VAR) models of unknown order and multivariate spline models with unknown knot points.
ISSN:1061-8600
1537-2715
DOI:10.1198/106186002475