High-throughput and high-sensitivity capillary electrophoresis–mass spectrometry method for sulfur-containing amino acids
Biological thiol amino acids have been suggested as biomarkers for pathological changes because they are reactive chemicals that participate in various physiological processes. In this study, multisegmented injection capillary electrophoresis–mass spectrometry with online sample preconcentration was...
Gespeichert in:
Veröffentlicht in: | Journal of Analytical Science and Technology 2021-09, Vol.12 (1), p.1-9, Article 43 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Biological thiol amino acids have been suggested as biomarkers for pathological changes because they are reactive chemicals that participate in various physiological processes. In this study, multisegmented injection capillary electrophoresis–mass spectrometry with online sample preconcentration was used for analysis of thiol amino acids and intermediates of sulfur metabolism in human glioma cell line U-251 with high accuracy, throughput, and sensitivity. This was achieved using multiple, large-volume injections for online sample preconcentration. The 16 intermediates of sulfur metabolism had a good linear correlation coefficient range of 0.984–1 and the limit of detection range was 1.4–203.9 ng/mL. The recovery ranges of most amino acids were 88.1–114.5%, 89.0–104.3%, and 76.9–104.5% at 0.3, 0.75, and 1.5 μg/mL, respectively. The relative standard deviation ranges for the inter- and intra-day precision were 1.8–10.7% and 4.3–18.8%, respectively. Compared with the traditional injection method, the analytical time for compounds in sulfur metabolism was reduced to 4 min/sample, the method throughput was enhanced five times, and the sensitivity was increased 14.4–33.1 times. Customized injection sequences were applied in experimental optimization. The developed method simplified the experimental optimization to one injection and is suitable for the analysis of sulfur metabolites in biological samples and has high sensitivity, throughput, speed, and accuracy. |
---|---|
ISSN: | 2093-3134 2093-3371 2093-3371 |
DOI: | 10.1186/s40543-021-00295-1 |