Convergence of proximal splitting algorithms in $\operatorname{CAT}(\kappa)$ spaces and beyond

In the setting of $\operatorname{CAT}(\kappa)$ CAT ( κ ) spaces, common fixed point iterations built from prox mappings (e.g. prox-prox, Krasnoselsky–Mann relaxations, nonlinear projected-gradients) converge locally linearly under the assumption of linear metric subregularity. Linear metric subregul...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Fixed point theory and algorithms for sciences and engineering 2021-08, Vol.2021 (1), Article 13
Hauptverfasser: Lauster, Florian, Luke, D. Russell
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In the setting of $\operatorname{CAT}(\kappa)$ CAT ( κ ) spaces, common fixed point iterations built from prox mappings (e.g. prox-prox, Krasnoselsky–Mann relaxations, nonlinear projected-gradients) converge locally linearly under the assumption of linear metric subregularity. Linear metric subregularity is in any case necessary for linearly convergent fixed point sequences, so the result is tight. To show this, we develop a theory of fixed point mappings that violate the usual assumptions of nonexpansiveness and firm nonexpansiveness in p -uniformly convex spaces.
ISSN:2730-5422
2730-5422
DOI:10.1186/s13663-021-00698-0