Renormalization for the Laplacian and global well-possness of the Landau–Lifshitz–Gilbert equation in dimensions $n \geq3
The global solution of the $n \geq3$ n ≥ 3 Landau–Lifshitz–Gilbert equation on $\mathbb{S}^{2}$ S 2 is studied under the cylindrical symmetric coordinates. An equivalent complex-valued equation in cylindrical symmetric coordinates is obtained by the Hasimoto transformation. A renormalization for the...
Gespeichert in:
Veröffentlicht in: | Boundary value problems 2020-05, Vol.2020 (1), Article 96 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The global solution of the
$n \geq3$
n
≥
3
Landau–Lifshitz–Gilbert equation on
$\mathbb{S}^{2}$
S
2
is studied under the cylindrical symmetric coordinates. An equivalent complex-valued equation in cylindrical symmetric coordinates is obtained by the Hasimoto transformation. A renormalization for the Laplacian is used to transform this equivalent system to a Ginzberg–Landau type system in which the Strichartz estimate can be applied. The global
$H^{2}$
H
2
well-posedness of the Cauchy problem for the Landau–Lifshitz–Gilbert equation is established. |
---|---|
ISSN: | 1687-2770 1687-2770 |
DOI: | 10.1186/s13661-020-01377-6 |