Renormalization for the Laplacian and global well-possness of the Landau–Lifshitz–Gilbert equation in dimensions $n \geq3

The global solution of the $n \geq3$ n ≥ 3 Landau–Lifshitz–Gilbert equation on $\mathbb{S}^{2}$ S 2 is studied under the cylindrical symmetric coordinates. An equivalent complex-valued equation in cylindrical symmetric coordinates is obtained by the Hasimoto transformation. A renormalization for the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Boundary value problems 2020-05, Vol.2020 (1), Article 96
Hauptverfasser: Zhong, Penghong, Wu, Fengong, Tang, Shengxiang
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The global solution of the $n \geq3$ n ≥ 3 Landau–Lifshitz–Gilbert equation on $\mathbb{S}^{2}$ S 2 is studied under the cylindrical symmetric coordinates. An equivalent complex-valued equation in cylindrical symmetric coordinates is obtained by the Hasimoto transformation. A renormalization for the Laplacian is used to transform this equivalent system to a Ginzberg–Landau type system in which the Strichartz estimate can be applied. The global $H^{2}$ H 2 well-posedness of the Cauchy problem for the Landau–Lifshitz–Gilbert equation is established.
ISSN:1687-2770
1687-2770
DOI:10.1186/s13661-020-01377-6