Noisy training for deep neural networks in speech recognition

Deep neural networks (DNNs) have gained remarkable success in speech recognition, partially attributed to the flexibility of DNN models in learning complex patterns of speech signals. This flexibility, however, may lead to serious over-fitting and hence miserable performance degradation in adverse a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:EURASIP journal on audio, speech, and music processing speech, and music processing, 2015-01, Vol.2015 (1), Article 2
Hauptverfasser: Yin, Shi, Liu, Chao, Zhang, Zhiyong, Lin, Yiye, Wang, Dong, Tejedor, Javier, Zheng, Thomas Fang, Li, Yinguo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Deep neural networks (DNNs) have gained remarkable success in speech recognition, partially attributed to the flexibility of DNN models in learning complex patterns of speech signals. This flexibility, however, may lead to serious over-fitting and hence miserable performance degradation in adverse acoustic conditions such as those with high ambient noises. We propose a noisy training approach to tackle this problem: by injecting moderate noises into the training data intentionally and randomly, more generalizable DNN models can be learned. This ‘noise injection’ technique, although known to the neural computation community already, has not been studied with DNNs which involve a highly complex objective function. The experiments presented in this paper confirm that the noisy training approach works well for the DNN model and can provide substantial performance improvement for DNN-based speech recognition.
ISSN:1687-4722
1687-4722
DOI:10.1186/s13636-014-0047-0