Existence of an unbounded branch of the set of solutions for Neumann problems involving the "Equation missing" -Laplacian

We are concerned with the following nonlinear problem: − div ( w ( x ) | ∇ u | p ( x ) − 2 ∇ u ) + | u | p ( x ) − 2 u = μ g ( x ) | u | p ( x ) − 2 u + f ( λ , x , u , ∇ u ) in Ω, ∂ u ∂ n = 0 on ∂ Ω, which is subject to a Neumann boundary condition, provided that μ is not an eigenvalue of the p ( x...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Boundary value problems 2014-05, Vol.2014 (1), Article 92
Hauptverfasser: Hwang, Byung-Hoon, Lee, Seung Dae, Kim, Yun-Ho
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We are concerned with the following nonlinear problem: − div ( w ( x ) | ∇ u | p ( x ) − 2 ∇ u ) + | u | p ( x ) − 2 u = μ g ( x ) | u | p ( x ) − 2 u + f ( λ , x , u , ∇ u ) in Ω, ∂ u ∂ n = 0 on ∂ Ω, which is subject to a Neumann boundary condition, provided that μ is not an eigenvalue of the p ( x ) -Laplacian. The aim of this paper is to study the structure of the set of solutions for the degenerate p ( x ) -Laplacian Neumann problems by applying a bifurcation result for nonlinear operator equations. MSC: 35B32, 35D30, 35J70, 47J10, 47J15.
ISSN:1687-2770
1687-2770
DOI:10.1186/1687-2770-2014-92