Existence of a solution of integral equations via fixed point theorem

In this paper, we establish a solution to the following integral equation: 1 u ( t ) = ∫ 0 T G ( t , s ) f ( s , u ( s ) ) d s for all  t ∈ [ 0 , T ] , where T > 0 , f : [ 0 , T ] × R → R and G : [ 0 , T ] × [ 0 , T ] → [ 0 , ∞ ) are continuous functions. For this purpose, we also obtain some aux...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of inequalities and applications 2013-11, Vol.2013 (1), Article 529
Hauptverfasser: Gülyaz, Selma, Karapınar, Erdal, Rakocević, Vladimir, Salimi, Peyman
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we establish a solution to the following integral equation: 1 u ( t ) = ∫ 0 T G ( t , s ) f ( s , u ( s ) ) d s for all  t ∈ [ 0 , T ] , where T > 0 , f : [ 0 , T ] × R → R and G : [ 0 , T ] × [ 0 , T ] → [ 0 , ∞ ) are continuous functions. For this purpose, we also obtain some auxiliary fixed point results which generalize, improve and unify some fixed point theorems in the literature. MSC: 47H10, 54H25.
ISSN:1029-242X
1029-242X
DOI:10.1186/1029-242X-2013-529