Boundedness of the maximal operator in the local Morrey-Lorentz spaces
In this paper we define a new class of functions called local Morrey-Lorentz spaces M p , q ; λ loc ( R n ) , 0 < p , q ≤ ∞ and 0 ≤ λ ≤ 1 . These spaces generalize Lorentz spaces such that M p , q ; 0 loc ( R n ) = L p , q ( R n ) . We show that in the case λ < 0 or λ > 1 , the space M p ,...
Gespeichert in:
Veröffentlicht in: | Journal of inequalities and applications 2013-07, Vol.2013 (1), Article 346 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper we define a new class of functions called local Morrey-Lorentz spaces
M
p
,
q
;
λ
loc
(
R
n
)
,
0
<
p
,
q
≤
∞
and
0
≤
λ
≤
1
. These spaces generalize Lorentz spaces such that
M
p
,
q
;
0
loc
(
R
n
)
=
L
p
,
q
(
R
n
)
. We show that in the case
λ
<
0
or
λ
>
1
, the space
M
p
,
q
;
λ
loc
(
R
n
)
is trivial, and in the limiting case
λ
=
1
, the space
M
p
,
q
;
1
loc
(
R
n
)
is the classical Lorentz space
Λ
∞
,
t
1
p
−
1
q
(
R
n
)
. We show that for
0
<
q
≤
p
<
∞
and
0
<
λ
≤
q
p
, the local Morrey-Lorentz spaces
M
p
,
q
;
λ
loc
(
R
n
)
are equal to weak Lebesgue spaces
W
L
1
p
−
λ
q
(
R
n
)
. We get an embedding between local Morrey-Lorentz spaces and Lorentz-Morrey spaces. Furthermore, we obtain the boundedness of the maximal operator in the local Morrey-Lorentz spaces.
MSC:
42B20, 42B25, 42B35, 47G10. |
---|---|
ISSN: | 1029-242X 1029-242X |
DOI: | 10.1186/1029-242X-2013-346 |