Epitope Edited Hematopoietic Stem Cells to Enable Synergistic Immunotherapy Combinations for Acute Myeloid Leukemia

Despite treatment advances, acute myeloid leukemia (AML) is still associated with an unfavorable outcome for >50% of patients. Whereas novel immunotherapies, such as CAR-T cells, bispecific and toxin conjugated antibodies (mAb), demonstrated clinical efficacy when targeting dispensable lineage an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Blood 2023-11, Vol.142 (Supplement 1), p.7130-7130
Hauptverfasser: Casirati, Gabriele, Cosentino, Andrea, Mucci, Adele, Mahmoud, Mohammed S, Ugarte Zabala, Iratxe, Zeng, Jing, Ficarro, Scott, Klatt, Denise, Brendel, Christian, Rambaldi, Alessandro, Ritz, Jerome, Marto, Jarrod, Pellin, Danilo, Bauer, Daniel E., Armstrong, Scott A, Genovese, Pietro
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Despite treatment advances, acute myeloid leukemia (AML) is still associated with an unfavorable outcome for >50% of patients. Whereas novel immunotherapies, such as CAR-T cells, bispecific and toxin conjugated antibodies (mAb), demonstrated clinical efficacy when targeting dispensable lineage antigens (Ag), such as CD19 in B-ALL, the same approach cannot be exploited for AML, due to lack of actionable leukemia-restricted Ags. Suitable targets are shared with healthy progenitor or mature myeloid cells, leading to on-target/off-tumor toxicity and impairment of hematopoietic reconstitution. Several AML immunotherapies are currently under development, but their use is restricted to a limited time window, likely insufficient for disease eradication. To address these issues, we reasoned that precise modification of the targeted epitopes in donor HSPC used in HSCT results in loss of mAb recognition, without affecting normal protein expression, regulation, and function ( Nature, accepted). Epitope editing allows targeting genes essential for leukemia survival regardless of shared expression or functional role in normal HSPC, thus minimizing the risk of tumor immune escape by Ag loss or downregulation. Cytokine receptors such as FLT3, KIT and CD123 are found in >85% of AML cases and their mutation (e.g., FLT3-ITD) or overexpression is associated with poor prognosis. We identified amino acid substitutions in the FLT3, KIT and CD123 extracellular domains that preserve physiologic surface expression, ligand-binding, kinase phosphorylation, colony-forming capacity, proliferative response, transcriptional and phospho-proteomic profile of CD34+ HSPCs but avoid detection by a therapeutic monoclonal Ab. Cells expressing these variants were resistant to CAR-T killing and did not induce CAR activation and proliferation during in vitro co-culture. We were able to introduce these mutations into CD34+ HSPCs by adenine base editing (ABE) with high efficiencies (90%, 85% and 75% for FLT3, KIT and CD123, respectively) without the need for dsDNA breaks. After xenotransplant into NBSGW mice, FLT3, KIT or CD123 epitope-editedHSPC sustained long-term multilineage hematopoiesis indicating editing and preserved functionality of HSCs. Upon treatment with FLT3 CAR-T in vivo, we observed sparing of human CD34+38- HSPCs, granulo-mono progenitors (GMP), B-cells and B-progenitors in the bone marrow of mice engrafted with FLT3-edited HSPCs compared to AAVS1 controls. Treatment with CD123 CAR-
ISSN:0006-4971
1528-0020
DOI:10.1182/blood-2023-189980