N/KRAS-Mutant AML LSCs Originate from Committed Myelomonocytic Progenitors and Drive Clinical Resistance to Venetoclax

Driver mutations in acute myeloid leukemia (AML) often exhibit distinct temporal acquisition patterns, but the biological basis for this, if any, remains unknown. RAS mutations occur invariably late in AML, upon progression or relapsed/refractory disease, in contrast to their function as early drive...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Blood 2023-11, Vol.142 (Supplement 1), p.403-403
Hauptverfasser: Sango, Junya, Carcamo, Saul, Cruz-Rodriguez, Nataly, Sirenko, Maria, Maiti, Abhishek, Olszewska, Malgorzata, Wang, Tiansu, Ulukaya, Gulay Bengu, Tomalin, Lewis, Olivier, Emmanuel, Jaud, Manon, Chaligne, Ronan, Mansour, Hager, Demircioglu, Deniz, Landau, Dan A., Papaemmanuil, Elli, DiNardo, Courtney D., Hasson, Dan, Konopleva, Marina Y., Papapetrou, Eirini
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Driver mutations in acute myeloid leukemia (AML) often exhibit distinct temporal acquisition patterns, but the biological basis for this, if any, remains unknown. RAS mutations occur invariably late in AML, upon progression or relapsed/refractory disease, in contrast to their function as early drivers in solid tumors. We developed synthetic leukemogenesis models in human induced pluripotent stem cell (iPSC)- and primary cord blood (CB)-derived human hematopoietic stem/progenitor cells (HSPCs) by introducing the prototypical NRAS G12D mutation alone or with other mutational combinations, using CRISPR, and engraftment of a transplantable leukemia into NSG mice as the readout. RAS mutations alone were not sufficient for leukemogenesis, but required specific cooperating mutations. Subsequently, by creating temporally controlled engineered models, we found that RAS mutations are obligatory late events that can only drive leukemic transformation when acquired after, but not before, cooperating mutations. We provide the mechanistic explanation for this in a requirement for mutant RAS to specifically transform committed granulocyte-monocyte progenitors (GMPs) harboring previously acquired driver mutations, through sorting and transplantation and multi-omics experiments. In contrast, acquisition of RAS mutations in earlier progenitors (common myeloid progenitors, CMP), with or without cooperating mutations, blocked the emergence of GMPs and abolished engraftment or gave rise to a myeloproliferative neoplasm. These results indicate that advanced RAS-mutant (MT) leukemic clones have a different cell type of origin from the ancestral clone. Next, using single-cell transcriptomics in cells isolated from xenografts of two AML-iPSC lines generated from an AML patient with a subclonal KRAS G12D mutation, one capturing the RAS WT major clone and one the KRAS G12D subclone, we show that KRAS G12D leukemia stem cells (LSCs) give rise to leukemia with a more monocytic immunophenotype, while the ancestral clone within the same patient generates more leukemic cells with primitive and neutrophil markers. These results were corroborated by Genotyping of Transcriptomes (GoT) in another AML patient with subclonal NRAS G12D mutation. Recent studies have linked monocytic AML and, independently, RAS pathway mutations to poor responses to Venetoclax (VEN)-containing regiments. In view of the causal link we found between RAS mutations and monocytic disease, we evaluated the associations
ISSN:0006-4971
1528-0020
DOI:10.1182/blood-2023-187695