Resistance to CD38 Antigen Targeted Therapy in Multiple Myeloma May Result from Underrecognized Chromosome 4 Gene Deletions

Anti-CD38 monoclonal antibodies (mAbs), daratumumab (dara) and isatuximab (isa), are approved to treat multiple myeloma (MM) in the first line and relapsed/refractory settings. Resistance portends a poor prognosis, yet underlying mechanisms have not been well characterized. Despite generally high CD...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Blood 2023-11, Vol.142 (Supplement 1), p.1976-1976
Hauptverfasser: Portuguese, Andrew J, Fang, Min, Tuazon, Sherilyn A., Pont, Margot, Qu, Xiaoyu, Shasha, Carolyn, Comstock, Melissa L, Lyons, Justina, Cole, Gabriel, Newell, Evan W., Glynn, Emily, Soma, Lorinda, Green, Damian J
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Anti-CD38 monoclonal antibodies (mAbs), daratumumab (dara) and isatuximab (isa), are approved to treat multiple myeloma (MM) in the first line and relapsed/refractory settings. Resistance portends a poor prognosis, yet underlying mechanisms have not been well characterized. Despite generally high CD38 expression on most malignant plasma cells (PCs), antigen density may impact the clinical efficacy of targeted therapy. Unfortunately, therapeutic anti-CD38 mAbs interfere with detection and quantification of CD38 surface level by most conventional clinical flow cytometry assays, limiting characterization of CD38 antigen escape. Tumor cell evasion of antigen specific therapeutics can occur with target loss or downmodulation, a phenomenon conventionally referred to as antigen escape. To elucidate mechanisms of CD38 antigen escape, we evaluated MM patients treated with anti-CD38 mAbs who underwent a marrow evaluation between 1/2017 and 10/2022 at a single institution. Eighty-one of 161 (50%) patients had become clinically refractory over their course. Among 82 (51%) patients with ≥1 chromosomal genomic array test (CGAT) performed, 10 (12%) were found to harbor a CD38 deletion ( Table). With a CGAT coverage of 31%, the estimated prevalence of CD38 deletions was 39%. The median interval from diagnosis to CD38 deletion was calculated as 6.7 years (IQR 2.8 to 11.6) for CD38-deleted patients and estimated as 12.9 years (95% CI 12 to NA; Figure) for all patients. The presence of a CD38 deletion was associated with an increasing number of chromosomal abnormalities on concurrent FISH (OR 2.00, 95% CI 1.33 to 3.29, p=0.002). Specific FISH and flow cytometry findings occurred in conjunction with a CD38 deletion. In 50% of patients, flow cytometry detected a bimodal distribution of CD38 fluorescence intensity, reflecting two populations of malignant plasma cells with distinct CD38 surface levels. No patient showed a uniform malignant plasma cell population with a normal surface CD38 level. When the CD38 (4p15.32) deletion was identified in the context of a large 4p deletion spanning the FGFR3 locus, the FGFR3 (4p16) probe could detect the relevant loss of 4p. This was seen in 6 of 8 patients with a concurrent FGFR3 deletion by CGAT. The proportion of clones harboring a CD38 deletion could be quantified by FISH over time when testing was performed on a CD138-enriched sample. Low-level CD38 deletions (≤25%) did not confer resistance to dara-containing multi-drug regimens. In
ISSN:0006-4971
1528-0020
DOI:10.1182/blood-2023-186688