Identification of Acute Myeloid Leukemia Cell Surface Therapeutic Targets Using Single Cell RNA Sequencing Supported By Surface Proteomics

Background: Acute myeloid leukemia (AML) comprises diverse genomic subgroups and remains hard to treat in most patients. Despite breakthroughs in the therapeutic arsenal in recent years, clinical usage of therapeutic antibodies or chimeric antigen receptor T (CAR-T) cells has been lagging in contras...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Blood 2023-11, Vol.142 (Supplement 1), p.163-163
Hauptverfasser: Lisi, Véronique, Khakipoor, Banafsheh, Farah, Azer, Bordeleau, Marie-Eve, Audemard, Eric, Metois, Arnaud, Theret, Louis, Spinella, Jean-François, Chagraoui, Jalila, Moujaber, Ossama, Mallinger, Laure, Boivin, Isabel, Mayotte, Nadine, Hajmirza, Azadeh, Bonneil, Eric, Béliveau, Francois, Feghali, Albert, Boucher, Geneviève, Gendron, Patrick, Barabe, Frederic, Lemieux, Sebastien, Richard-Carpentier, Guillaume, Hébert, Josée, Roux, Philippe, Sauvageau, Guy, Lavallee, Vincent-Philippe
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Background: Acute myeloid leukemia (AML) comprises diverse genomic subgroups and remains hard to treat in most patients. Despite breakthroughs in the therapeutic arsenal in recent years, clinical usage of therapeutic antibodies or chimeric antigen receptor T (CAR-T) cells has been lagging in contrast to other hematological malignancies. In fact, CD33 represents the only antibody-based strategy approved for this disease to date, highlighting the need to identify new promising targets. AML cells span a wide range of aberrant myeloid differentiation programs, complexifying the identification, by bulk genomics, of targets expressed in the most immature leukemic cells. Aims and Methods: To identify the expression landscape of surface proteins in immature leukemic cells, we performed single-cell RNA sequencing (scRNA-seq, 10x 3' Reagent Kits) of primary human AML cells from 20 specimens of the Leucegene cohort enriched in intermediate and adverse genetic backgrounds ( KMT2A-rearranged n=5, chromosome 5 and/or 7 deletions (abn5/7, n=5) complex karyotype (n=4), NPM1/DNMT3A/FLT3-ITD triple-mutant (n=3) and others (n=3)). A Random Forest classifier was developed to unbiasedly classify AML cells into distinct differentiation stages using normal bone marrow-derived scRNA-seq data from the Human Cell Atlas (HCA) consortium. Genes were scored based on their probability of coding for proteins expressed at the cell surface using the SPAT algorithm developed by our group (https://doi.org/10.1101/2023.07.07.547075), retaining high score ones. To validate surface expression, we concomitantly analyzed the surface proteome (hereafter named surfaceome) of 100 primary human AML samples from the Leucegene cohort, including all 20 samples profiled by scRNA-seq. Results: After quality control, we profiled and characterized 103 690 high quality cells (mean of 5185 cells/sample). We trained a Random Forest classifier to annotate cells in a two step process, first identifying plasma cells based on a restricted list of genes abundantly expressed in these cells and subsequently assigning the remaining cells to one of 33 cell types. We performed a five-fold cross validation of the model and subsequently determined the accuracy of our classifier to be 92% on the test subset of the HCA data. Applied to our AML cell collection, a total of 35 053 cells (34%) were unbiasedly classified as Hematopoietic Stem Cell (HSC)-like, corresponding to the most phenotypically immature leukemic cells in e
ISSN:0006-4971
1528-0020
DOI:10.1182/blood-2023-186367