Loss of Function of SETD2 Tumor Suppressor in Chronic Myeloid Leukemia (CML) Progenitors Fosters Genomic Instability and Enhances Clonogenic Potential
BACKGROUND AND AIMS - Genomic instability is a hallmark of chronic myeloid leukemia (CML) cells since the chronic phase (CP) of the disease, and results in BCR::ABL1 mutations and/or additional genetic and genomic aberrations that may drive resistance to tyrosine kinase inhibitors (TKIs) and progres...
Gespeichert in:
Veröffentlicht in: | Blood 2023-11, Vol.142 (Supplement 1), p.1785-1785 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | BACKGROUND AND AIMS - Genomic instability is a hallmark of chronic myeloid leukemia (CML) cells since the chronic phase (CP) of the disease, and results in BCR::ABL1 mutations and/or additional genetic and genomic aberrations that may drive resistance to tyrosine kinase inhibitors (TKIs) and progression to blast crisis (BC). Genomic instability is also a feature of CML stem and progenitor cells and may contribute to their persistence. The SETD2 tumor suppressor codes for a protein that trimethylates histone H3 at lysine 36 (H3K36me3). In solid tumors, SETD2 loss of function has been shown to impair H3K36me3-mediated recruitment of DNA damage response components. We have recently reported that non genomic loss of function of SETD2 is a feature of BC CML and results from premature proteasome-mediated degradation of the SETD2 protein triggered by Aurora kinase A phosphorylation and MDM2 ubiquitination. In the present study, we aimed to assess SETD2/H3K36me3 status in CD34+ progenitors of CP CML patients (pts) and whether SETD2/H3K36me3 deficiency may play a role in genomic instability in CML models.
METHODS - Western blotting (WB) was used to assess SETD2 protein expression and H3K36me3 as a surrogate marker of SETD2 function in the CD34+ cell fraction isolated from the bone marrow of 20 newly diagnosed CP CML pts and from a pool of healthy donors (HD). SETD2 forced expression in CD34+ progenitors from newly diagnosed CP CML pts and in the SETD2-deficient KCL22 cell line was performed by nucleofection. SETD2 knock-down in the SETD2-proficient LAMA84 cell line was performed by RNAi. Clonogenic capacity was evaluated by clonogenic assays. Chromatin immunoprecipitation sequencing (ChIP-seq) for H3K36me3 was performed on an Illumina HiSeq2000 with a min 50 million 150-bp single-end reads per replicate. High resolution karyotyping wias perfomed with Cytoscan HD arrays. DNA damage and DNA repair activation were assessed in primary samples and cell lines by WB and immunofluorescence (IF) using antibodies specific for phospho-H2AX, mismatch repair (MMR) and homologous recombination repair (HR) proteins.
RESULTS - WB demonstrated a marked down-modulation of SETD2 expression, paralleled by H3K36me3 deficiency, in the CD34+ cells of all newly diagnosed CP CML pts as compared to the total mononuclear fraction and to CD34+ cells from HDs. To investigate whether SETD2 loss affects the activation and proficiency of HR and MMR, we used chronic exposure to UV rays or a single |
---|---|
ISSN: | 0006-4971 1528-0020 |
DOI: | 10.1182/blood-2023-185677 |