New Insights into Cellular Defects during Haematopoiesis of Sickle Cell Disease Using the Townes Mouse Model

Sickle cell disease (SCD) is an inherited disorder caused by a point mutation in the β globin gene leading to the synthesis of an abnormal haemoglobin (HbS), that under low oxygen tension polymerises driving the sickling of red blood cells and reducing their lifespan. SCD is characterized by anaemia...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Blood 2023-11, Vol.142 (Supplement 1), p.3855-3855
Hauptverfasser: Grenier, Julien, Peyrard, Barbara, Godard, Auria, Cheyrol, Julien, Trovati Maciel, Thiago, El Nemer, Wassim, De Grandis, Maria
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Sickle cell disease (SCD) is an inherited disorder caused by a point mutation in the β globin gene leading to the synthesis of an abnormal haemoglobin (HbS), that under low oxygen tension polymerises driving the sickling of red blood cells and reducing their lifespan. SCD is characterized by anaemia, vaso-occlusion and haemolysis, progressive multiorgan damage and increased mortality. For decades, peripheral haemolysis has been considered as the sole driver of anaemia in SCD. Recently, we have demonstrated the occurrence of ineffective erythropoiesis (IE) in SCD suggesting that anaemia can be impacted by defects of central origin and hinting to abnormalities in the haematopoietic compartment. To gain insight into SCD haematopoiesis, we investigated the haematopoietic compartment of the humanized transgenic Townes mouse model by conducting an in-depth flow cytometry-based analysis in the bone marrow (BM) and spleen, comparing SS mice to control littermates (AA and AS) at 8 and 16 weeks of age (termed 8-w and 16-w, respectively). BM and spleen are two key hematopoietic tissues in adult mice: BM is involved in maintaining homeostatic haematopoiesis and spleen responds to stress haematopoiesis. First, we assessed haematopoietic differentiation in the BM of SS, AA and AS mice. Total number of BM cells and frequency of Lin Neg and Lin NegKit Pos (LK) were identical between SS and control littermates whereas a minor increase in the percentages of Lin NegSca PosKit Pos (LSK) was observed in 16-w SS mice. Within the LSK compartment, we found a 1.81- and 2.5-fold reduction of long-term haematopoietic stem cell (lt-HSC) frequency in 8-w and 16-w SS mice, respectively (Fig1 A). HSCs differentiate into multipotent progenitors (MPPs), which have decreased self-renewal capacity and progressively engage in the megakaryocytic (MPP2), myeloid-biased (MPP3), or lymphoid-biased (MPP4) lineage. The MPP3 compartment showed a 1.6-fold increased frequency in 8-w and 16-w SS mice indicating a skewing toward myeloid cell production and the onset of extramedullary haematopoiesis as early as 8 weeks after birth (Fig1 A). Next, we analysed the downstream lineages of the committed progenitors (lymphoid, granulo-macrophagic, megakaryocytic, and erythroid) and found a 1.4 and 2.3-fold increase of th megakaryocyte-erythroid progenitor cells (MEPs) and pre-CFU-Es in 8-w and 16-w SS mice, respectively (Fig1 A,B). We assessed the potential of SS hematopoietic progenitors (HSPCs) to different
ISSN:0006-4971
1528-0020
DOI:10.1182/blood-2023-181742