Bone Marrow Adipocytes Induce Metabolic Reprogramming of Multiple Myeloma Cells

Obesity-induced increases in bone marrow adipocyte (BMAd) numbers and volume are associated with an increased risk of multiple myeloma (MM). We analyzed gene expression from previously published public datasets and found that 11 out of 47 genes associated with fatty acid (FA) metabolism showed incre...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Blood 2021-11, Vol.138 (Supplement 1), p.1614-1614
Hauptverfasser: Panaroni, Cristina, Fulzele, Keertik, Mori, Tomoaki, Nakamoto-Matsubara, Rie, Maebius, Allison, Raje, Noopur S.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Obesity-induced increases in bone marrow adipocyte (BMAd) numbers and volume are associated with an increased risk of multiple myeloma (MM). We analyzed gene expression from previously published public datasets and found that 11 out of 47 genes associated with fatty acid (FA) metabolism showed increasing trend from MGUS (monoclonal gammopathy of undetermined significance), MM, to plasma cell leukemia. These genes included ACC1, the first and rate-limiting step of de novo fatty acid biosynthesis and ECHS1, the second step of the mitochondrial fatty acid beta-oxidation pathway. We have previously shown that adipocytes support the growth of MM cells. However, the molecular mechanisms of interaction between MM cells and BMAd remain largely unknown. Here, we hypothesize that BMAd support MM cells through metabolic reprogramming. Here we sought to identify the molecular pathways involved in MM/ BMAd interaction. BM aspirates of MGUS, smoldering MM (SMM), and newly diagnosed MM (NDMM) patients were used to isolate fat-enriched BM fraction and BM stromal cells (BMSCs). Murine BMSC cell-line OP9, murine MM cell-line 5TGM1, and human MM cell lines MM.1S and OPM2 were obtained from ATCC or provided by collaborators and cultured as their respective standard procedures. In-vitro adipogenesis was induced in OP9 cells or BMSCs by supplementing media with dexamethasone, indomethacin, insulin, and IBMX. MM cells were co-cultured directly with pre- or mature adipocytes. Cell proliferation was assessed using CyQUANT NF Cell Proliferation Assay. Lipolysis was assessed by High Sensitivity Lipolysis Assay Kit (Sigma). Lipid uptake in MM cells was assessed by flow-cytometry analysis of the incorporation of fluorescent 12- or 16-carbon long-chain fatty acids BODIPY-FL-C12 and BODIPY-FL-C16, respectively, or LipidTox labelled FA from co-cultured adipocytes. In-vivo effects of excess FA on MM cell growth were assessed using a plasmacytoma model in CB17 SCID mice. In-vitro co-culture revealed that BMSC-derived adipocytes (Ad) from MGUS, SMM and NDMM donors increased the proliferation of MM.1S MM cells significantly. Similarly, mature murine OP9 Ad cells also increased the proliferation of 5TGM1 murine MM cells. Interestingly, co-cultures showed dramatic decrease in LipidTox-stained lipid-droplet size distribution, suggesting increased lipolysis in Ad. In the process of lipolysis, various lipase enzymes hydrolyze stored triglycerides into free fatty acids (FFA) and glycerol. Co-cultu
ISSN:0006-4971
1528-0020
DOI:10.1182/blood-2021-154110