Single-Cell Profiling Reveals Clinically Relevant Evolutionary Trajectories and Alternate Biologies in Human Follicular Lymphoma

Follicular lymphoma (FL) is an indolent lymphoma of mature B-cells but may transform to a more aggressive histology, most commonly diffuse large B cell lymphoma. Recurrent mutations associated with transformation have been identified; however, biological predictors to guide initial therapy have rema...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Blood 2021-11, Vol.138 (Supplement 1), p.450-450
Hauptverfasser: Wang, Xuehai, Nissen, Michael, Gracias, Deanne, Kusakabe, Manabu, Simkin, Guillermo, Duns, Gerben, Sarkozy, Clementine, Chavez, Elizabeth, Segat, Gabriela Cristina, Kim, Jubin, Jiang, Aixiang, Aoki, Tomohiro, Islam, Rashedul, May, Christina, Hung, Stacy, Tyshchenko, Kateryna, Brinkman, Ryan, Hirst, Martin, Karsan, Aly, Freeman, Ciara L., Sehn, Laurie H., Savage, Kerry J., Craig, Jeffrey W, Scott, David W., Steidl, Christian, Shah, Sohrab P, Weng, Andrew P.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Follicular lymphoma (FL) is an indolent lymphoma of mature B-cells but may transform to a more aggressive histology, most commonly diffuse large B cell lymphoma. Recurrent mutations associated with transformation have been identified; however, biological predictors to guide initial therapy have remained elusive. We hypothesized that clonal heterogeneity and patient-specific immune responses would contribute to variable clinical outcomes and that understanding the complexity of the entire tumor “ecosystem” would allow more individualized matching of patients with specific therapies. In prior ASH meetings, we presented preliminary analyses of B and T cell-focused phenotypic profiling of 155 newly diagnosed pre-treatment FL biopsy samples at single cell resolution by mass cytometry (CyTOF). These prior analyses unexpectedly revealed two distinct evolutionary trajectories which were independently reflected in both B and T cell compartments. One trajectory expectedly involved germinal center B cells (GCB); however, the other was more related to naïve/memory B-cells (NMB). Interestingly, cluster co-occurrence analysis suggested that the GCB and NMB trajectories were mutually exclusive of another and tended not to be found within the same tumor despite their high prevalences (χ 2 = 29.8, DF=1, p=4.8e-8; χ 2 test). Clustering analysis based on relative abundances of T cell subsets revealed 4 distinct immune patterns: Group 1 was characterized by naive T cells; Group 2 by T follicular helper (Tfh) cells; Group 3 by CD4+ regulatory T (Treg) and CD8 effector memory cells (CD8EM); and Group 4 by a diverse complement of naive, memory, and differentiated effector subsets. We report here further analyses, now incorporating DNA mutational and clinical outcome information. Tumors were parsed into 3 types based on the phenotype of the majority (>50%) of tumor cells present in the diagnostic biopsy: Type A tumors dominated by GCB cells (28% of samples), type B tumors dominated by NMB cells (18% of samples), and type nonA/nonB tumors dominated by neither GCB nor NMB cells (54% of samples). Type A tumors were significantly enriched for mutations in EZH2, TNFRSF14, and MEF2B, while no significant mutational associations were seen in type B and nonA/nonB tumors. Type B was significantly associated with increased risk of transformation, and when combined with a measure of intratumoral phenotypic diversity (“Entropy”), we found that type B tumors with high (above median) Entropy,
ISSN:0006-4971
1528-0020
DOI:10.1182/blood-2021-153237