Karyosequencing: Integrating Genome-Wide and Targeted Sequencing for Comprehensive Diagnosis of Lymphoproliferative Disorders

Introduction: Molecular diagnostic testing for lymphoproliferative disorders (LPDs) includes detection of clonal immunoglobulin (IG) and/or T cell receptor (TCR) rearrangements, translocations, copy number alterations (CNA) and somatic mutations. To date, laboratories still rely on subjective and la...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Blood 2021-11, Vol.138 (Supplement 1), p.272-272
Hauptverfasser: Stewart, James Peter, Harewood, Louise, Srivastava, Shambhavi, Gazdova, Jana, Maurya, Manisha, Nakjang, Sirintra, Hodges, Elizabeth, Chiecchio, Laura, Cross, Nicholas C.P., Jenner, Matthew W, Catherwood, Mark, Ryan, Sarra, Moorman, Anthony V., Darzentas, Nikos, Gonzalez, David
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Introduction: Molecular diagnostic testing for lymphoproliferative disorders (LPDs) includes detection of clonal immunoglobulin (IG) and/or T cell receptor (TCR) rearrangements, translocations, copy number alterations (CNA) and somatic mutations. To date, laboratories still rely on subjective and labour-intensive technologies, e.g. karyotyping/FISH to detect complex genomic alterations. Whole Genome Sequencing (WGS) can detect all genomic alterations, but factors such as cost, computation/storage, DNA requirements and poor detection of clinically relevant subclonal mutations limits the routine implementation of WGS in clinical diagnostics. We have developed “KaryoSequencing” (KS), a novel approach that combines targeted deep-sequencing, using a targeted hybridisation capture NGS panel, for rare mutation and translocation detection with shallow WGS (sWGS) for genome wide copy number analysis, in a single test. Methods: KS was validated using 138 clinical samples from patients with acute lymphoblastic leukaemia (ALL) (n=46), chronic lymphocytic leukaemia (CLL) (n=46) and plasma cell myeloma (PCM) (n=46) samples from 3 UK laboratories. Samples underwent library preparation and hybridisation using the EuroClonality-NDC assay. A KS library for each sample was prepared by combining the pre-capture and post-capture libraries at an optimised ratio to enable high coverage (>500 x) at regions covered by the targeted panel while providing 0.5-1x coverage genome-wide. Forty-six KS libraries were pooled and sequenced per NovaSeq 6000 run, using a 200-cycle SP flow cell and a 100bp paired-end strategy. For analysis of targeted regions, somatic mutation calling was performed using VarDict and structural variants (rearrangements and translocations) were detected using ARResT/Interrogate. For analysis of large chromosomal copy number variation using sWGS, a modified version of QDNASeq/ACE with a window size of 50kb was performed. For sWGS analysis, bioinformatic exclusion of all target capture regions and panel-specific off-target regions was performed using a panel of 48 DNA samples from healthy individuals ran on the same KS protocol. Results: Analysis of genome-wide copy number by sWGS was concordant in 477 of 503 (95%) evaluable FISH tests, including precise detection of hyper and hypo-diploidy and other complex karyotypes. The performance of the targeted deep-sequencing component of the KS approach was assessed to ensure comparable performance to previously validated
ISSN:0006-4971
1528-0020
DOI:10.1182/blood-2021-152258