Proteogenomic Characterization of Highly Enriched Viable Leukemic Blasts in Acute Myeloid Leukemia: A SWOG Report

Acknowledgements: This work was funded by the following NIH/NCI/NCTN grant awards: RO1CA190661, R01CA160872, U10CA180888, U10CA180819, U24CA196175. The authors wish to gratefully acknowledge the importantcontributions of the late Dr. Stephen H. Petersdorf to SWOG and to the study S0106. The authors...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Blood 2021-11, Vol.138 (Supplement 1), p.522-522
Hauptverfasser: Naru, Jasmine, Othus, Megan, Lin, ChenWei, Moseley, Anna, Willman, Cheryl L, Pogosova-Agadjanyan, Era L, Wu, Feinan, Appelbaum, Frederick R., Erba, Harry P., Jenkins, Isaac C., Kennedy, Jacob J, Delrow, Jeffrey, Whiteaker, Jeffrey, Radich, Jerald P., Godwin, John E., Beppu, Lan, Fitzgibbon, Matthew, Fang, Min, Wang, Pei, Gafken, Phillip R, Ivey, Richard G, Meshinchi, Soheil, Chauncey, Thomas R., Lorentzen, Travis D, Voytovich, Uliana J, Paulovich, Amanda G, Stirewalt, Derek
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Acknowledgements: This work was funded by the following NIH/NCI/NCTN grant awards: RO1CA190661, R01CA160872, U10CA180888, U10CA180819, U24CA196175. The authors wish to gratefully acknowledge the importantcontributions of the late Dr. Stephen H. Petersdorf to SWOG and to the study S0106. The authors would like to acknowledge that a portion of the specimens were obtained from the Fred Hutch/University of Washington Hematopoietic Disorder Repository. AML is a molecularly heterogenous disease that harbors multiple genomic, epigenomic, and transcriptomic abnormalities. Despite the use of newer therapeutic agents and identification of multiple prognostic markers, most patients with AML still relapse or succumb to their disease. Understanding biological factors that determine relapse is of major clinical interest in AML. Proteins are responsible for much of the functional biology of the cells. However, few studies have examined the global proteome in AML, and, to our knowledge, studies have not previously examined the proteome in highly enriched undifferentiated AML blasts. Therefore, we have developed an integrated approach utilizing mass spectrometry-based proteomics and leveraging next generation RNA sequencing (RNAseq) to identify novel protein biomarkers associated with clinical outcome in a homogeneous population of undifferentiated viable leukemic blasts (uVLBs) from AML patients. Cryopreserved specimens from previously untreated de novo AML patients (n=27) were obtained from the SWOG Leukemia Repository. Patients were treated with dose intensive induction and consolidation as part of SWOG-9031, SWOG-9333, S0106, and S0112 studies. uVLBs were isolated from specimens using fluorescence-activated cell sorting (FACS). Targeted genome sequencing examined for genomic mutations in uVLBs, while global RNA sequencing (RNAseq) and tandem mass tag labelling followed by liquid chromatograph with tandem mass spectrometry (TMT-LC-MS/MS) were used to quantify transcript and protein expression, respectively. Analyses identified 6761 unique proteins, with 238 and 460 proteins significantly associated with complete response (CR) and overall survival (OS), respectively. There was modest overlap between the prognostically significant transcript and protein biomarkers (Figure 1). We also were able to identify and quantify aberrant proteins arising from genomic mutations . Examples of the “neoproteins” detected included proteins harboring NPM1 mutations (Figure 2a) and those h
ISSN:0006-4971
1528-0020
DOI:10.1182/blood-2021-151246