Accurate Prediction of Chromosome-Level CNVs from Targeted NGS
Background: Aneuploidy and large-scale Copy Number Variations (CNVs) are prominent features of cancer cells. While Fluorescence in situ hybridization (FISH) and conventional cytogenetics (CC) are the gold standard for detecting aneuploidy and CNVs, NGS-based assays are currently used for high-resolu...
Gespeichert in:
Veröffentlicht in: | Blood 2021-11, Vol.138 (Supplement 1), p.3994-3994 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Background: Aneuploidy and large-scale Copy Number Variations (CNVs) are prominent features of cancer cells. While Fluorescence in situ hybridization (FISH) and conventional cytogenetics (CC) are the gold standard for detecting aneuploidy and CNVs, NGS-based assays are currently used for high-resolution detection of copy number alterations assessing the whole genome. However, although an increasing number of NGS-based tools have been developed for detecting aneuploidy or CNVs from whole genome or exome sequencing data, only a limited number of options are available for targeted gene panels. Despite mechanisms provided to establish normal profiles for a specific panel, the accuracy of these tools at the chromosome level suffer when only a small number of regions are targeted on each chromosome. Here we leveraged on a custom amplicon based NGS assay designed to detect somatic alterations (SNVs and indels) in 297 hematological cancer relevant genes, previously validated in our clinical laboratory. We introduce a simple approach to accurately predict chromosome-level CNVs such as monosomy and trisomy for a targeted gene panel, commonly used in a clinical setting.
Methods: Mutation profiles, including SNVs, INDELs, and structural changes, were interrogated with an in-house bioinformatics pipeline that utilized PureCN and CNVkit algorithms to detect structural changes. The first step consists of finding optimal panel-specific decision thresholds for gains and losses at the gene level. This step was performed using an independent set of 1,314 clinical samples sequenced with the NeoType® Heme assay developed by NeoGenomics Laboratories, Inc. for which at least one FISH test was performed in addition to the sequencing. Three genes (ATM, TP53, and NF1) were used to find optimal decision thresholds based on the FISH result for these markers. These thresholds are used afterward to predict a gain or a loss for any other gene in the panel. The second step consists of predicting the chromosome-level gain or loss based on the individual predictions at the gene level by simply observing the frequency of targeted genes on the corresponding chromosome predicted as either gained or lost by the first step approach. The 19, 7, and 18 targeted genes in the NGS panel (Table 1) were respectively used to predict monosomy 7, trisomy 8, and trisomy 12 in a second set of over 7,000 clinical samples with known ploidy for chromosomes with clinically relevant ploidy abnormalities in hema |
---|---|
ISSN: | 0006-4971 1528-0020 |
DOI: | 10.1182/blood-2021-150911 |