Non-Infectious Morbidity during Pediatric Acute Myeloid Leukemia Chemotherapy in the Netherlands: A 15-Year Overview

Introduction Together with considerable improvement in diagnostics and supportive care measures, treatment intensification has contributed to the improvement of pediatric acute myeloid leukemia (AML) survival outcomes. However, treatment-related toxicity is a consequence of intensified chemotherapy...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Blood 2021-11, Vol.138 (Supplement 1), p.2293-2293
Hauptverfasser: Schwartz, Emily R., Klein, Kim, De Haas, Valerie, Dors, Natasja, van den Heuvel-Eibrink, Marry M., Knops, Rutger R.G., Tissing, Wim J.E., Versluijs, Birgitta, Zwaan, C. Michel, van Litsenburg, Raphaele R.L., Kaspers, Gertjan J.L.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Introduction Together with considerable improvement in diagnostics and supportive care measures, treatment intensification has contributed to the improvement of pediatric acute myeloid leukemia (AML) survival outcomes. However, treatment-related toxicity is a consequence of intensified chemotherapy regimens, which has profound implications for both morbidity and mortality. Despite the known devastating impact of all types of toxicity on quality of life (QoL), studies presenting the different forms of non-infectious toxicity prevalent during the most recent Dutch pediatric AML protocols are lacking given that only prior protocols have been evaluated in this manner as of yet. Furthermore, the literature on non-infectious toxicity incidence in pediatric AML patients is relatively scarce. Therefore, the objectives of this study were to: 1) evaluate the cumulative incidence (C.I.) of severe, but non-lethal, non-infectious toxicity during AML treatment according to the last three consecutive protocols of the Dutch Childhood Oncology Group (DCOG), and 2) compare treatment-related toxicity frequencies between protocols. Methods A retrospective chart review was performed on 245 Dutch patients diagnosed with de novo AML (acute promyelocytic leukemia, myeloid leukemia of Down Syndrome, and secondary AML were excluded) and treated according to ANLL-97/AML-12 (1998-2005) n=118, AML-15 (2005-2010) n=60, or DB-AML-01 (2010-2013) n=67. Table 1 details protocol specifics, including drug dosages per course. Grade 3-4 toxicities, including hematological toxicity, cardiotoxicity, respiratory toxicity, mucositis, typhlitis, nephrotoxicity, hepatotoxicity, neurotoxicity, pain, allergic anaphylactic reaction, and elevation of alanineaminotransferase or bilirubin were defined according to Common Terminology Criteria for Adverse Event version 4.0, excluding infectious toxicity. Grade 5 toxicity (treatment-related mortality) was beyond the scope of this study. Intensive care unit (ICU) admission data was additionally assessed. Toxicity C.I.s were determined via competing events analyses. Relapse and death were considered competing events. Patients were censored at time of stem cell transplantation. Per-protocol comparisons were conducted via Chi-square test, due to lack of sufficient power required to calculate C.I.s. Results Median age at diagnosis was 6.0 years [interquartile range (IQR) 1.0-12.0], 58% were male. Mucositis was the most frequent form of non-hematological toxicity
ISSN:0006-4971
1528-0020
DOI:10.1182/blood-2021-149851