Prophylactic Administration of Antibodies Specific for the HPA-1a Epitope Prevents Alloimmunization and Platelet Destruction in a Murine Model of Fetal Neonatal Alloimmune Thrombocytopenia

Fetal/neonatal alloimmune thrombocytopenia (FNAIT) is a life-threatening bleeding disorder caused by maternal alloantibodies directed against paternally inherited antigens present on the surface of fetal and neonatal platelets. The human platelet alloantigen HPA-1a (formerly known as the Pl A1 alloa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Blood 2021-11, Vol.138 (Supplement 1), p.3153-3153
Hauptverfasser: Zhi, Huiying, Sheridan, Douglas, Newman, Peter J.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Fetal/neonatal alloimmune thrombocytopenia (FNAIT) is a life-threatening bleeding disorder caused by maternal alloantibodies directed against paternally inherited antigens present on the surface of fetal and neonatal platelets. The human platelet alloantigen HPA-1a (formerly known as the Pl A1 alloantigen), is the most frequently implicated HPA for causing FNAIT in Caucasians. A single Leu33Pro amino acid polymorphism near the amino terminus of the integrin b3 subunit (known as GPIIIa in the platelet literature) serves as the central target for alloantibody binding, leading to clearance of both fetal and neonatal platelets, thrombocytopenia, and in the most severe cases, spontaneous- or trauma-induced intracranial hemorrhage. Unlike hemolytic disease of the newborn, which occurs in pregnancies subsequent to parturition-induced alloimmunization, an estimated 25% to 50% of FNAIT cases occur without warning during gestation of the first pregnancy. Though long proposed, there are currently no approved therapies for the prevention of FNAIT. We recently described the development of transgenic mice expressing the human HPA-1a allogeneic epitope on a murine GPIIIa backbone. Transfusion of such platelets into wild-type female mice induced the generation of high-titer anti-HPA-1a alloantibodies that can cross the placenta and recapitulate many of the relevant clinical features of FNAIT. To test the hypothesis that rapid elimination of fetal HPA-1a positive platelets from the circulation of a mother who is HPA-1a negative might prevent maternal alloimmunization and the development of FNAIT, we administered either a hyperimmune plasma-derived polyclonal anti-HPA-1a antibody derived from females having previous cases of FNAIT (termed RLYB211), or a novel human monoclonal antibody directed against the HPA-1a epitope (termed RLYB212), to wild-type female mice prior to challenging them with HPA-1a-positive murine platelets. RLYB211 and RLYB212 were each able to effect the rapid removal of HPA-1a-positive platelets from murine circulation and prevent the development of anti-HPA-1a alloantibodies. Importantly, wild-type female mice pretreated with RLYB211 prior to exposure to HPA-1a-positive platelets, and then impregnated by HPA-1a-positive males, gave birth to HPA-1a-positive pups with significantly improved platelet counts and no bleeding symptoms. These preclinical data establish the potential for prophylactic polyclonal and monoclonal anti-HPA-1a antibody therapy for t
ISSN:0006-4971
1528-0020
DOI:10.1182/blood-2021-148557