VAV1-GFP Fusion Protein Generated By Intron-Based Genome Editing through CRISPR/Cas9 Leads to Spontaneous Activation in TCR Signaling

Recurrent VAV1 mutations and gene fusions (VAV1-THAP4, VAV1-MYO1F, and VAV1-S100A7) have been identified in peripheral T-cell lymphoma (PTCL) including angioimmunoblastic T-cell lymphoma (AITL) patients. A common theme of these genetic aberrations is the loss of the auto-inhibitory C-terminal SH3 do...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Blood 2020-11, Vol.136 (Supplement 1), p.27-28
Hauptverfasser: Liu, Xiaoqian, Li, Yuping, Liu, Xuxiang, Qi, Wei, Zhang, Jibin, Shetty, Kunal, Iqbal, Javeed, Chan, Wing C.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Recurrent VAV1 mutations and gene fusions (VAV1-THAP4, VAV1-MYO1F, and VAV1-S100A7) have been identified in peripheral T-cell lymphoma (PTCL) including angioimmunoblastic T-cell lymphoma (AITL) patients. A common theme of these genetic aberrations is the loss of the auto-inhibitory C-terminal SH3 domain of VAV1 resulting in aberrant activation of VAV1 independent of normal activation events. Although mouse models support VAV1 mutation/fusion as having a driver oncogenic role in the pathogenesis of PTCL, investigations on VAV1 activity in human cells were performed mainly on the Jurkat cell line with exogenous expression of VAV1 fusion proteins. This approach has un-physiological expression of VAV1 and the functions of VAV1 fusion/mutation under normal endogenous regulation need to be explored. In this study, we introduced a fusion gene, similar to what has been observed in PTCL, into the endogenous VAV1 locus. The fusion gene was under normal regulatory controls instead of being over-expressed by a viral vector, thus providing a more accurate assessment of its function in vivo. To simulate VAV1 fusion, we knocked in a green fluorescence protein (GFP) sequence followed by a simian virus 40 (SV40) poly(A) signal into intron 25 of VAV1 locus by clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein 9 (Cas9) technology. A homologous DNA repair (HDR) template with tandem homologous sequences of VAV1 gene, GFP gene, and a SV40 transcription poly(A) signal was electroporated into Jurkat cells together with the Cas9/sgRNA ribonucleoprotein (RNP) complex. This knock-in disrupted the transcription of exon 26 and exon 27, resulting in an in-frame fusion protein with GFP fused to the C-terminal of SH2 of VAV1 (VAV1SH2-GFP)(Figure A). Because our guide RNA targeted the intron 25 sequence by CRISPR/Cas9 system, any possible indels caused by non-homologous end joining will occur within the intron and will not change the protein sequence of the wild type VAV1. The GFP expressing cells were isolated from the edited cell population by FACS. The fusion of GFP with VAV1 in the sorted cells was confirmed by western blot (Figure B) and these cells displayed a heterozygous VAV1SH2-GFP fusion/wild type (WT) phenotype that mimicked the VAV1 translocations observed in PTCL patients. Jurkat cells with VAV1SH2-GFP showed spontaneous activation of the T-cell receptor (TCR) signaling pathway. Analysis of signaling events downstream of VAV1 demonstra
ISSN:0006-4971
1528-0020
DOI:10.1182/blood-2020-143052