Identification of LAG3+ T Cell Populations in the Tumor Microenvironment of Classical Hodgkin Lymphoma and B-Cell Non-Hodgkin Lymphoma
Background: LAG3 is one of the immune check point receptors that are expressed on activated cytotoxic T-cells and regulatory T cells. Physiologically, T-cell proliferation and memory T-cell differentiation is negatively regulated by LAG3-MHC interaction. In cancer tissues, T-cells that are chronical...
Gespeichert in:
Veröffentlicht in: | Blood 2020-11, Vol.136 (Supplement 1), p.19-19 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Background: LAG3 is one of the immune check point receptors that are expressed on activated cytotoxic T-cells and regulatory T cells. Physiologically, T-cell proliferation and memory T-cell differentiation is negatively regulated by LAG3-MHC interaction. In cancer tissues, T-cells that are chronically exposed to tumor antigens might upregulate LAG3 and receive inhibitory stimuli to enter an exhaustion state limiting anti-tumor immune responses. Currently, clinical trials using double blockade of LAG3/PD1 are active in several solid tumours, but there are only a small number of clinical trials using LAG3 monoclonal antibodies in lymphoma. Recently, we published a characteristic LAG3+ T-cell population as a mediator of immune suppression in classical Hodgkin lymphoma (Aoki & Chong et al. Cancer Discovery 2020). However, the abundance and variability of LAG3 positive T-cell populations across a spectrum of B-cell lymphoma has not been well studied and it remains an open question if LAG3 expression is associated with treatment outcome under standard-of-care conditions.
Methods: We performed a LAG3 immunohistochemical (IHC) screen in a large cohort of B-cell Non-Hodgkin lymphoma (diffuse large B-cell lymphoma (DLBCL); N=341, follicular lymphoma (FL); N=198 (grade 1-3A), transformed FL to aggressive lymphoma (tFL); N=120, mantle cell lymphoma (MCL); N=179, primary mediastinal large B-cell lymphoma (PMBCL); N=61) and classical Hodgkin lymphoma (HL; N=459) to assess LAG3 expression in the tumor microenvironment (TME). Moreover, we characterized LAG3+ T-cell populations using multi-color immmunohistochemistry (IHC) (LAG3, PD1, CD4, CD8, FOXP3, CD20) in various lymphoma subtypes. Clinical parameters including treatment outcome were correlated with the abundance of LAG3+ T-cell populations in the TME.
Results: On average, HL (7%) and PMBCL (6%) showed higher LAG3+ cellular frequency than the other B-cell lymphoma subtypes studied (DLBCL and FL: 2%, MCL: 0.8%). Comparing the frequency of LAG3+ cells according to MHC class I/II status, DLBCL showed a significant correlation with MHC class I status, and LAG3 expression correlated with MHC class II status in HL. Next, we performed multi-color IHC to describe subtype-specific expression patterns of LAG3 in T cell subsets. LAG3+PD1- T-cells were predominantly found in HL and PMBCL with only rare LAG3+PD1+ cells in HL. The majority of LAG3+ T-cells co-expressed CD4 in HL, in contrast to CD8 in PMBCL. DLBCL showed a mixed po |
---|---|
ISSN: | 0006-4971 1528-0020 |
DOI: | 10.1182/blood-2020-141462 |