Phase I Study of Ixazomib Added to Chemotherapy in the Treatment of Acute Lymphoblastic Leukemia in Older Adults

Introduction: While progress has been made in the treatment of childhood leukemia, the outlook for patients >60 years of age with acute lymphoblastic leukemia (ALL) is poor with complete remission rates (CR) of approximately 60% and 3-year survivals (OS) of less than 15%. Intensified treatment in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Blood 2020-11, Vol.136 (Supplement 1), p.41-42
Hauptverfasser: Amrein, Philip C., Ballen, Karen K., Stevenson, Kristen E., Blonquist, Traci M., Brunner, Andrew M., Hobbs, Gabriela S., Hock, Hanno R., McAfee, Steven L., Moran, Jenna A., Bergeron, Meghan, Foster, Julia E., Bertoli, Christina, McGregor, Kristin, Macrae, Molly, Burke, Meghan, Behnan, Tanya T., Som, Tina T., Ramos, Aura Y., Vartanian, Megan K., Lombardi Story, Jennifer, Connolly, Christine, Graubert, Timothy A., Neuberg, Donna S., Fathi, Amir T.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Introduction: While progress has been made in the treatment of childhood leukemia, the outlook for patients >60 years of age with acute lymphoblastic leukemia (ALL) is poor with complete remission rates (CR) of approximately 60% and 3-year survivals (OS) of less than 15%. Intensified treatment in a later CALGB trial showed little improvement with a CR=61% and 5-year OS=6% (Stock, Cancer 2013). Ixazomib is an oral proteasome inhibitor, which has shown single agent activity and promising combination activity in pediatric ALL patients (Messinger, Blood 2012). We sought to assess the safety and tolerability, as well as early efficacy of adding ixazomib to a current MGH-DFCI/HCC multi-agent regimen for older adults with ALL. Methods: Patients aged 51 to 75 years of age with newly diagnosed B-ALL and T-ALL were screened for eligibility. Patients with mature ALL (including Burkitt's) were excluded. Patients with Philadelphia chromosome positive ALL (BCR-ABL1+) were eligible, and dasatinib was added to the chemotherapy on Day 10 for these patients. The chemotherapy treatment schedule from induction through maintenance is outlined in Table 1. A standard 3 + 3 patient cohort dose escalation design was used to determine the maximum tolerated dose (MTD) of ixazomib during induction for these patients, the primary objective of the trial. After consolidation I, patients in complete remission (CR) with a suitable donor were offered a hematopoietic stem cell transplantation (HSCT) as per institutional guidelines. Those not going to HSCT continued therapy as noted in the table. Results: There were 19 patients with B-ALL enrolled, none with T-ALL. Among these patients, 7 harbored BCR-ABL1 rearrangements. The median age was 65 years, 74% were male, and 90% had a performance status 0 or 1. The MTD was 2.3 mg of ixazomib, as 2 patients at 3.0 mg developed DLT's: a grade 3 peripheral neuropathy and a grade 5 acute kidney injury (Table 2). Grade 3 and 4 toxicities encountered at any time consisted mainly of grade 4 neutropenia in 13 patients and grade 4 thrombocytopenia in 12 patients. One patient experienced grade 3 neutropenia and 5 patients experienced grade 3 thrombocytopenia. Two patients with grade 2 neuropathy did not meet the definition of DLT. Among the 19 patients, 15 (79%, [95% confidence interval (CI), 54-94%]) achieved CR (14) or CRi (1), and 5 patients went on to HSCT. The median follow-up time was 2 years (range, 1-5) for 8 patients remaining alive. The 1-year ove
ISSN:0006-4971
1528-0020
DOI:10.1182/blood-2020-139661