Biallelic Inactivation of Multiple Tumor Suppressors Is Associated with Early Relapse after Stem Cell Transplant in Newly Diagnosed Myeloma

Introduction: Treatment strategies incorporating proteasome inhibitors, immunomodulators, and autologous transplantation induce durable remissions in most newly diagnosed multiple myeloma (NDMM) patients. However, for 20% of patients even the most intensive therapies have not resulted in satisfactor...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Blood 2019-11, Vol.134 (Supplement_1), p.1783-1783
Hauptverfasser: Weinhold, Niels, Xu, Jing, Fröhlich, Martina, Poos, Alexandra M, John, Lukas, Müller-Tidow, Carsten, Sauer, Sandra, Huhn, Stefanie, Hose, Dirk, Seckinger, Anja, Hemminki, Kari, Brors, Benedikt, Goldschmidt, Hartmut, Giesen, Nicola, Raab, Marc S
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Introduction: Treatment strategies incorporating proteasome inhibitors, immunomodulators, and autologous transplantation induce durable remissions in most newly diagnosed multiple myeloma (NDMM) patients. However, for 20% of patients even the most intensive therapies have not resulted in satisfactory outcomes. Currently available risk scores do not fully appreciate the complex biology of MM and have limited sensitivity and/or specificity for identification of high risk (HR) disease. We therefore aimed to characterize the mutational landscape of transplant-eligible NDMM patients who relapsed within 2 years after treatment initiation, thereby defining true clinical HRMM. To elucidate the clonal structure and evolution in these patients, we performed deep whole genome sequencing (WGS, ~80x) and RNAseq of samples collected at baseline and first relapse. Methods: We included 34 transplanted NDMM patients who experienced early relapse during maintenance within 2 years after treatment initiation. Tumor samples were collected from 20 and 31 patients at baseline and first relapse, respectively. Paired samples taken at both time points were available from 17 patients. WGS and RNAseq data were pre-processed using in-house pipelines. Single nucleotide variants (SNVs), indels, translocations, and copy number variants (CNVs) were called using Platypus, SOPHIA and ACESeq. Subclones were identified using SciClone. RNAseq data was aligned using STAR. Fusion genes were called by Arriba. Differential gene expression was assessed using DESeq2. Results: At baseline, only 12/20 patients would have been classified as HR according to conventional markers, including presence of t(4;14), t(14;16), amp(1q), clonal del(17p) or ISS3. In 5 patients del(17p) was solely observed in a minor sublone, which was selected during treatment and became dominant at relapse in 3 of them. Selection of amp(1q)-positive subclones was seen in 2 patients, illustrating that subclonal amp(1q) or del(17p) are frequent events in HR patients, and - in contrast to recent results - could contribute to early relapse. Translocations involving MYC have also been reported to be of prognostic impact. At baseline 9 of 20 patients were positive for this event, with BMP6 and the lambda locus being the translocation partner in 2 patients each. At relapse we found an additional MYC-lambda, and two MYC-kappa translocations, supporting recent observations that MYC-light chain translocations are associated with aggressive
ISSN:0006-4971
1528-0020
DOI:10.1182/blood-2019-131195