RAC1 Inhibitor EHT1864 and Venetoclax Overcome Midostaurin Resistance in Acute Myeloid Leukemia

Introduction Acute Myeloid Leukemia (AML) is a genetically heterogeneous disease characterized by clonal expansion of immature myeloid progenitor cells in the bone marrow (BM). Mutations of the FMS-like tyrosine kinase 3 (FLT3) gene occur in approximately 30% of AML cases, with Internal Tandem Dupli...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Blood 2019-11, Vol.134 (Supplement_1), p.1277-1277
Hauptverfasser: Garitano-Trojaola, Andoni, Sancho, Ana, Goetz, Ralph, Walz, Susanne, Jetani, Hardikkumar, Teufel, Eva, Rodhes, Nadine, DaVia, Matteo, Haertle, Larissa, Nerreter, Silvia, Vogt, Cornelia, Duell, Johannes, Tibes, Raoul, Kraus, Sabrina, Rosenwald, Andreas, Rasche, Leo, Hudecek, Michael, Sauer, Markus, Einsele, Hermann, Groll, Jürgen, Kortüm, Martin
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Introduction Acute Myeloid Leukemia (AML) is a genetically heterogeneous disease characterized by clonal expansion of immature myeloid progenitor cells in the bone marrow (BM). Mutations of the FMS-like tyrosine kinase 3 (FLT3) gene occur in approximately 30% of AML cases, with Internal Tandem Duplications (ITD) being the most common type of mutation. Several FLT3 specific inhibitors (TKI) have been developed such as quizartinib, crenolanib and midostaurin (recently approved for clinical use). Nevertheless FLT3-ITD is associated with unfavorable prognosis and patients develop drug resistance with the underlying mechanisms remaining largely unexplained. Recently, changes within the actin cytoskeleton were associated with drug resistance development in various cancers. FLT3-ITD mutations are associated with RAC1 activation. RAC1 belongs to the family of RHO GTPases and enhances the actin polymerization by inducing the expression of N-WASP or WAVE2 and ARP2/3 complex. Therefore, we investigated actin cytoskeleton rearrangements through RAC1 activation as a potential mechanism contributing to Midostaurin resistance in AML. Material and methods First, we developed two Midostaurin resistant AML cell lines (MID-RES, MV4-11 and MOLM-13). Single cell measurements of Cell Stiffnes, cell adhesion forces between tumor and HS5 stroma cells and Actin filaments were performed by Atomic Force Microscopy (FluidFM®) and SIM microscopy, respectively. RAC1 activation was measured by RAC1 activation kit provided by Cytoskeleton. FLT3 surface and intracellular expression was measured by Flow cytometry and western blot, respectively. Cell death was analyzed by Annexin/PI staining in flow cytometry. Results The MID-RES cell lines MV4-11/MOLM-13 showed higher FLT3 surface and intracellular expression compared to their MID sensitive parental cells. In line with our expectations, we observed RAC1 activation, as well as an up-regulation of actin polymerization positive regulators such as N-WASP, WAVE2, PFN1 and ARP2/3 complex and the inhibition of actin polymerization negative regulator P-ser3 CFL1 in MID-RES cells. FLT3 receptor knock down by siRNAs reversed the MID resistance and reduced RAC1 activation and actin polymerization inducers expression. Likewise, bioinformatic analysis from publicly available microarray expression data (E-MTAB-3444), confirmed positive correlation between actin polymerization inducers and FLT3 signaling expression in 178 FLT3-ITD (r=0,67) and 461 FLT3 W
ISSN:0006-4971
1528-0020
DOI:10.1182/blood-2019-129762