Predicting the Long-Term Efficacy of Ifnα in JAK2V617F and Calr-Mutated MPN Patients
Introduction Classical BCR-ABL-negative myeloproliferative neoplasms (MPN) include Polycythemia Vera (PV), Essential Thrombocythemia (ET) and Primary Myelofibrosis (PMF). These are acquired clonal disorders of hematopoietic stem cells (HSC) leading to the hyperplasia of one or several myeloid lineag...
Gespeichert in:
Veröffentlicht in: | Blood 2019-11, Vol.134 (Supplement_1), p.4196-4196 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Introduction
Classical BCR-ABL-negative myeloproliferative neoplasms (MPN) include Polycythemia Vera (PV), Essential Thrombocythemia (ET) and Primary Myelofibrosis (PMF). These are acquired clonal disorders of hematopoietic stem cells (HSC) leading to the hyperplasia of one or several myeloid lineages. MPN are caused by three main recurrent mutations: JAK2V617F, mutations in the calreticulin (CALR) and thrombopoietin receptor (MPL) genes. Interferon alpha (IFNα) treatment induces not only a hematological response in around 70% of ET, PV and early myelofibrosis, but also a significant molecular response on both JAK2V617F- and CALR-mutated cells. However, a complete molecular response is only achieved in around 20% of patients. Our aim is to predict the long-term efficacy of IFNα in JAK2V617F- and CALR-mutated patients by monitoring the fate of the disease-initiating mutated HSC in order to better stratify the molecular responders.
Methods
A longitudinal observational study (3-5 years) was performed in 46 IFNα-treated patients. The MPN disease distribution was 42% ET, 47% PV and 11% PMF. We detected 33 patients with JAK2V617F mutation, 11 with CALR mutations (7 type 1/type 1-like and 4 type 2/type 2-like), 1 with both JAK2V617F and CALR mutation and 1 with JAK2V617F, CALR mutation and MPLS505N. At 4-month intervals, the JAK2V617For CALR mutation variant allele frequency was measured in mature cells (granulocytes, platelets). Simultaneously, the clonal architecture was determined by studying the presence of the mutations in colonies derived from the different hematopoietic stem and progenitor cell (HSPC) populations (CD90+CD34+CD38-HSC-enriched, CD90-CD34+CD38- immature and CD34+CD38+committed progenitors). We used a combination of mathematical modeling (Michor et al., Nature, 2005) and Bayesian analysis to infer the long-term behavior of mutated HSC.
Results
After a median follow-up of 40 months, IFNα targeted more efficiently and more rapidly the HSPC, particularly the HSC-enriched progenitors, than the mature blood cells in JAK2V617Fpatients (p |
---|---|
ISSN: | 0006-4971 1528-0020 |
DOI: | 10.1182/blood-2019-127903 |