Early Fever Detection By a Novel Wearable Continuous Temperature Monitor in Patients Undergoing Autologous Stem Cell Transplantation

Introduction Neutropenic fever following high-dose chemotherapy and autologous stem cell transplantation (ASCT) is a common (incidence 63-100%) and potentially life-threatening complication. Recommended time to antibiotic (TTA) administration is within 1 hr of fever onset with delays associated with...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Blood 2019-11, Vol.134 (Supplement_1), p.3481-3481
Hauptverfasser: Vera-Aguilera, Jesus, Haji-Abolhassani, Iman, Kulig, Kimary, Heitz, Roxana, Paludo, Jonas, Ghoreyshi, Atiyeh, Scheevel, Jordan R., Schimke, Jill M., Markovic, Svetomir N.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Introduction Neutropenic fever following high-dose chemotherapy and autologous stem cell transplantation (ASCT) is a common (incidence 63-100%) and potentially life-threatening complication. Recommended time to antibiotic (TTA) administration is within 1 hr of fever onset with delays associated with significant morbidity, prolonged hospitalization, and mortality. Standard of care guidelines emphasize patient self-monitoring for fever, with instructions to seek immediate medical attention if body temperature (temp) reaches 100.4°F or higher. In this study, we evaluated if a novel wearable, continuous temp monitor, tPatch, could reliably estimate core body temp and detect fever in an outpatient setting following ASCT. Additionally, we gathered preliminary data to explore early detection and prediction of clinically relevant temp rise in this clinical setting. Methods Patients (N = 86) with hematologic malignancies (62% multiple myeloma) who underwent high-dose chemotherapy followed by ASCT at Mayo Clinic, MN were prospectively enrolled between June 2018 and March 2019. Patients (82% male) wore an axilla-placed tPatch continuously for 7 days in an outpatient setting during the post ASCT period and were asked to record self-measured oral temp in 3-4 hr intervals daily using a standardized thermometer after appropriate training . Patients followed standard of care procedures with daily clinic assessment of temp, blood counts, and vital signs. An optional patient questionnaire was given at end-of-study. A model was trained using both patient- and clinic-assessed oral temp measures to estimate core temp from 2 sensors on the tPatch device. Core temp estimates and trends were then compared to patient- and clinic-assessed measurements. Fever was defined as a temperature ≥100.4°F for at least 1 hr. Results When compared to all oral temp reads, the tPatch estimated core temp within 0.03 ± 0.7℉. Among the 86 patients, clinic-assessed fever incidence was 29.4% while tPatch-assessed incidence was 58.8%. Using all clinic-recorded temp readings as “ground truth,” the sensitivity and specificity of the tPatch algorithm in detecting fevers were 88% and 86%, respectively, while patient self fever detection sensitivity was 62% and specificity 93%. With “fever episode” defined as a temp ≥100.4°F for at least 1 hr, tPatch detected 9.6 times the number of fever episodes vs. clinic reads. The average lead time of tPatch detection of clinic-recorded fevers was 3.7 hours. In 25% of
ISSN:0006-4971
1528-0020
DOI:10.1182/blood-2019-125159