Monocytic Myeloid-Derived Suppress Cells Restore Adipogenic Bone Marrow Microenvironment in Aplastic Anemia By Inhibiting Intra-BM CD8+ T Cells Proliferation
Aplastic anemia (AA) is a hematopoietic disorder resulted from immune-related hypocellular hematopoiesis in bone marrow (BM). It has been clearly addressed that the activated T cells contribute to the exhaustion of hematopoietic progenitors and hypo-hematopoiesis. The adipogenic BM is one of the cha...
Gespeichert in:
Veröffentlicht in: | Blood 2019-11, Vol.134 (Supplement_1), p.1211-1211 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Aplastic anemia (AA) is a hematopoietic disorder resulted from immune-related hypocellular hematopoiesis in bone marrow (BM). It has been clearly addressed that the activated T cells contribute to the exhaustion of hematopoietic progenitors and hypo-hematopoiesis. The adipogenic BM is one of the characteristics to make AA diagnosis. However, little is known about the relationship of intra-BM immune imbalance and hematopoietic microenvironment abnormity in this disease entity.
Functional hematopoiesis relies on not only abundant hematopoietic stem cells (HSCs) but also the balanced supportive hematopoietic niche. Intra-BM immune balance, at either cellular or cytokine level, is one of the key footstones to maintain hematopoietic microenvironment. Various intra-BM immune cellular components play both sides of one coin. Among them, myeloid-derived suppressive cells (MDSCs) are heterogeneous myeloid progenitor cells characterized by the negative immune response in cancers and other inflammatory diseases. In BM aspiration and biopsy samples from the patients who were diagnosed as AA in our study, massive activated lymphocytes infiltration and adipocytes accumulation were observed. Interestingly, the absolute numbers of immune modulatory MDSCs either in AA patients' PB or in BM of immune-related AA mice were reduced, indicating a potential link between polarized BM adipo-osteogenic microenvironment and immune disorder under AA circumstance. We thus adopted AA mice model to look into the embedded details both in vivo and in vitro.
We clarified that BM components were more vulnerable to the attack of CD8+ T cells than that of CD4+ T cells. Taking into the fact that BM adipocytes are more abundant either in AA patients or in AA mice models, we differentiated mesenchymal stromal cells (MSCs), the major BM stroma cells, into osteoblastic or adipogenic lineages to mimic the osteo-adipogenic differentiation in BM microenvironment. Interestingly, CD8+ T cells and interferon-γ(IFN-γ) exerted dramatically adipocytic stimulation on BM-MSCs either in vitro or in vivo, by determination of increasing expression of adipogenetic genes including Ap2, Perilipin, Pparg and Cebpα, as well as staining of Oil Red O and perilipin.
To dissect intra-BM cellular immune balance, MDSCs were isolated as representative immune regulating population to investigate their function on osteo-adipogenic balance. Interestingly, not CD11b+Ly6G+Ly6C-granulocytic-MDSCs (gMDSCs) but CD11b+Ly6G-Ly6C+mono |
---|---|
ISSN: | 0006-4971 1528-0020 |
DOI: | 10.1182/blood-2019-125059 |