Lentiviral Hematopoietic Stem and Progenitor Cell Gene Therapy for Wiskott-Aldrich Syndrome (WAS): Up to 8 Years of Follow up in 17 Subjects Treated Since 2010

Background: Wiskott-Aldrich syndrome (WAS) is a rare, X-linked, life-threatening primary immunodeficiency caused by mutations in the gene encoding the WAS protein (WASP). WASP-deficient immune cells have compromised immunological synapse formation, cell migration and cytotoxicity. Thus, WAS is chara...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Blood 2019-11, Vol.134 (Supplement_1), p.3346-3346
Hauptverfasser: Ferrua, Francesca, Cicalese, Maria Pia, Galimberti, Stefania, Giannelli, Stefania, Dionisio, Francesca, Barzaghi, Federica, Migliavacca, Maddalena, Bernardo, Maria Ester, Calbi, Valeria, Tucci, Francesca, Assanelli, Andrea A., Peccatori, Jacopo, Albertazzi, Elena, Clerici, Alessandra G., Salerio, Federica A., Scala, Serena, Basso-Ricci, Luca, Cenciarelli, Sabina, Canarutto, Daniele, Fraschetta, Federico, Bartoli, Antonella, Wolf, Hermann M., Silvani, Paolo, Gattillo, Salvatore, Coppola, Milena, Santoleri, Luca, Villa, Anna, Jones, Russell, Dott, Chris, Grazia Valsecchi, Maria, Ciceri, Fabio, Naldini, Luigi, Aiuti, Alessandro
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Background: Wiskott-Aldrich syndrome (WAS) is a rare, X-linked, life-threatening primary immunodeficiency caused by mutations in the gene encoding the WAS protein (WASP). WASP-deficient immune cells have compromised immunological synapse formation, cell migration and cytotoxicity. Thus, WAS is characterized by development of recurrent or severe infections, eczema, and increased risk of autoimmunity and malignancies. In addition, WASP deficiency results in microthrombocytopenia, leading to severe bleeding episodes. When a suitable donor is available, WAS can be treated by hematopoietic stem cell transplant (HSCT), but HSCT can be impeded by complications such as graft versus host disease, rejection and autoimmunity. Importantly, HSCT may carry higher risks in older children (>2-5 yrs) [Shin et al, 2012; Moratto et al, 2011]. An alternative approach is gene therapy (GT). We previously reported interim results of a Phase I/II clinical trial (NCT01515462) in 8 subjects treated with OTL-103, a drug product composed of autologous CD34+ hematopoietic stem and progenitor cells (HSPCs) transduced ex vivo with a lentiviral vector (LV) encoding human WASP cDNA under the control of the endogenous promoter [Ferrua et al, 2019]. We now report updated results on the safety and efficacy of OTL-103 in 17 subjects treated at San Raffaele Hospital as part of the same clinical trial or expanded access programs (EAP) with up to 8 yrs follow up (FU). Methods: NCT01515462: As described in Ferrua et al, 8 male subjects (mean age at GT: 4.8 yrs, range 1.1-12.4) were treated with OTL-103. The source of autologous CD34+ HSPCs was bone marrow (BM; n=5), mobilized peripheral blood (mPB; n=2) or both (n=1). As part of a reduced-intensity conditioning regimen, rituximab was given 22 days prior and busulfan + fludarabine during the week before OTL-103 infusion. At time of reporting, all subjects had ≥3 yrs FU (range: 3-8 yrs). 9 male subjects (11.2 yrs, 1.4-35.1) received identical treatment to subjects in the clinical trial; autologous CD34+ HSPCs source was mPB in all subjects. At time of reporting, subjects had a median of 1.4 yrs FU (range: 0.1-3.0 yrs) with 6/9 having ≥1 yr FU. Results: At last FU for all subjects (median: 3.0 yrs, range 0.1-8.0), overall survival was 94% (16/17). One EAP subject died 4.5 mo post-GT, due to deterioration of an underlying neurodegenerative condition considered unrelated to OTL-103 by investigator. To date, there have been no reports of insertional on
ISSN:0006-4971
1528-0020
DOI:10.1182/blood-2019-124665