Cooperativity between Flt3/Syk and Proteasome Inhibitors in Flt3mutant/Wildtype AML, By Acting on the Oxphos and Wnt Endpoints of Syk and p62SQSTM1 Pathways Prohibits Protective Autophagy; While Downregulation of NRF2, NQO1, Jun, and b-Catenin Bypasses Interfering RAS or WT1 Co-Mutations
Recent attempts at single agent targeted therapy of AMLs described by mutation of Flt3 or nuclear epigenetic effectors, has led to the conclusion that combination targeted approaches will be required (CM McMahon et al. Cancer Discov 2019). The simplest combination therapy would involve inhibitors di...
Gespeichert in:
Veröffentlicht in: | Blood 2019-11, Vol.134 (Supplement_1), p.5051-5051 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Recent attempts at single agent targeted therapy of AMLs described by mutation of Flt3 or nuclear epigenetic effectors, has led to the conclusion that combination targeted approaches will be required (CM McMahon et al. Cancer Discov 2019). The simplest combination therapy would involve inhibitors directed at mutant drivers at each level (receptor, nuclear). However, the number of those inhibitors is limited. A broader strategy would target common endpoints for converging pathways such as Wnt/beta-catenin activation elicited by mutation of IDH1/2, TET2, DNMT3A. We found marked cytoplasmic accumulation of ubiquitinated protein (especially inactive b-catenin excluded from the nucleus) by treatment with proteasome inhibitor(PI) to be an efficient, dose-dependent inducer of endoplasmic reticulum (ER) stress apoptosis in mutant Flt3/Wnt effector AML's, requiring concentrations =/>100nM Ixazomib, or =/>20nM Bortezomib, when used alone on cultured blasts. Indeed, a compensatory pathway to protective autophagic escape from PI in poor-risk AML is linked to the levels of NRF2, a major transcriptional activator of NADPH quinone reductase1 (NQO1) that buffers oxidative stress. However, the Flt3/Syk inhibitor (FSI) in clinical trial, TAK-659, at =/ |
---|---|
ISSN: | 0006-4971 1528-0020 |
DOI: | 10.1182/blood-2019-124384 |