Aberrant Cathepsin S Induces a Supportive Immune Microenvironment in Follicular Lymphoma

The highly variable clinical course of follicular lymphoma (FL) is determined by the molecular heterogeneity of the tumor cells and complex interactions with the microenvironment. Here, we provide biochemical, structural, functional and clinical evidence that aberrant Cathepsin S (CTSS) activity ind...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Blood 2019-11, Vol.134 (Supplement_1), p.657-657
Hauptverfasser: Hildebrand, Johannes Adrian, Bararia, Deepak, Stolz, Sebastian, Haebe, Sarah, Alig, Stefan, Bartoschek, Michael, Boesl, Michael, Pastore, Alessandro, Gaitzsch, Erik, Heide, Michael, Jurinovic, Vindi, Szczepanowski, Monika, Klapper, Wolfram, Louissaint, Abner, Ludwig, Christina, Bultmann, Sebastian, Leonhardt, Heinrich, Eustermann, Sebastian, Hopfner, Karl-Peter, Hiddemann, Wolfgang, von Bergwelt, Michael, Steidl, Christian, Kridel, Robert, Weinstock, David M, Schmidt-Supprian, Marc, Sárosi, Menyhárt B, Passerini, Verena, Mautner, Josef, Weigert, Oliver
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The highly variable clinical course of follicular lymphoma (FL) is determined by the molecular heterogeneity of the tumor cells and complex interactions with the microenvironment. Here, we provide biochemical, structural, functional and clinical evidence that aberrant Cathepsin S (CTSS) activity induces a supportive immune microenvironment in FL. By targeted DNA sequencing of 305 diagnostic FL biopsies, we identified somatic mutations of CTSS in 8% of cases (24/305), mostly clustered at Y132 (19/24) converting Y to D (16/19). A subset of CTSS Y132 mutations (N=5) occurred at lower variant allele frequencies (5-10%), indicating subclonality. Another 13% of FL had CTSS amplifications (37/286). CTSS Y132 mutations and CTSS amplifications were mutually exclusive. In a cohort of 51 FL, CTSS amplifications were associated with higher CTSS expression (P=0.05). Of note, a subset of FL without CTSS amplifications also had higher CTSS expression, suggesting additional mechanisms of transcriptional dysregulation. CTSS is a cysteine protease that is highly expressed in endolysosomes of antigen presenting cells and malignant B-cells. CTSS is involved in proteolytical processing of antigenic peptides for presentation on MHC-II to be recognized by antigen specific CD4+ T-cells. CTSS is synthesized as an inactive zymogen, which is converted to its active form by autocatalytic cleavage of the autoinhibitory propeptide (pro-CTSS). We used CRISPR/Cas9 to introduce CTSS Y132D into Karpas422, a B-cell lymphoma cell line that harbors the FL hallmark translocation t(14;18). Single-cell derived Y132D mutant clones showed >3-fold higher ratios of active CTSS to pro-CTSS (N=4, P=0.0003). Immunoprecipitated CTSS Y132D had >3-fold higher in vitro substrate cleavage activity compared to CTSS wild type (WT) (N=6, P=0.001). We purified pro-CTSS WT and Y132D and assayed their in vitro autocatalytic cleavage over time. The time required to convert 50% of pro-CTSS decreased from 17 minutes for WT to 11 minutes for Y132D (N=3, P=0.04). In contrast, purified active CTSS WT and Y132 had similar in vitro cleavage activities. Molecular dynamics simulations showed that the Y132D mutation shortens the distances by ~2Å between the catalytic triad of active CTSS (C139, H278, N298) and a stretch of amino acids from the proform (L80, G81, D82, S94), which may facilitate intramolecular cleavage. By mass spectrometry we could indeed detect novel intermediate-sized CTSS fragments. Thus, Y132D does not i
ISSN:0006-4971
1528-0020
DOI:10.1182/blood-2019-122663