Innate Immune Signaling Suppresses Acute Leukemia By Modifying MYC Oncogenic Activity
Individuals with clonal hematopoiesis of indeterminant potential (CHIP) are healthy, however they are at an increased risk of developing hematopoietic malignancies. The most frequent mutations in CHIP target DNMT3A and TET2, also are observed in acute myeloid leukemia (AML), myeloproliferative neopl...
Gespeichert in:
Veröffentlicht in: | Blood 2019-11, Vol.134 (Supplement_1), p.727-727 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Individuals with clonal hematopoiesis of indeterminant potential (CHIP) are healthy, however they are at an increased risk of developing hematopoietic malignancies. The most frequent mutations in CHIP target DNMT3A and TET2, also are observed in acute myeloid leukemia (AML), myeloproliferative neoplasms (MPN), and myelodysplastic syndromes (MDS). These findings indicate that additional alterations are needed for the transition from a pre-leukemic stage to frank leukemia, although the identity of such molecular events remains uncharacterized. To identify cellular states that cooperate with Tet2 loss, we used in vivo RNAi screening and identified the ubiquitin ligase TRAF6 required for malignant transformation of pre-leukemic TET2-deficient hematopoietic stem/progenitor cell (HSPC). Importantly, TRAF6 expression is significantly reduced in 25-50% of AML and MPN patients as compared to healthy controls. Furthermore, TET2 mutations are more strongly correlated with lower expression of TRAF6 as compared to patients with higher TRAF6 expression in certain subsets of AML.
To evaluate the consequences of TRAF6 deletion on TET2-deficienct pre-leukemic cells, we generated mice in which TRAF6 and TET2 are conditionally deleted in hematopoietic cells (VavCre;Traf6fl/fl;Tet2fl/fl[DKO]). Traf6KO mice developed a lethal phenotype with signs of MPN, including lymphopenia, neutrophilia, and increased hemoglobin levels; however, this disease was not transplantable. In striking contrast, deletion of TRAF6 in the context of TET2-deficient HSPC resulted in a rapid, penetrant, aggressive, and transplantable MPN/AML. To firmly establish that TRAF6 exhibits tumor suppressor functions, we determined whether physiological levels of TRAF6 overexpression could prevent malignant transformation. Overexpression of TRAF6 in FLT3-ITD mice inhibited malignant myeloid cell expansion in FLT3-ITD mice, and rescued the survival of the animals.
To uncover the molecular basis of TRAF6's tumor suppressor function, we performed gene expression profiling and proteomic characterization of TRAF6 ubiquitination substrates in leukemic cells. RNA-sequencing of HSPC revealed that deletion of TRAF6 resulted in a significant overexpression of MYC regulated genes in pre-leukemic HSPC. In support of these findings, the proteomic screen along with extensive in vitro validation experiments identified MYC as a substrate of TRAF6. Unlike the majority of reported ubiquitin-dependent post-translational modificatio |
---|---|
ISSN: | 0006-4971 1528-0020 |
DOI: | 10.1182/blood-2019-121423 |