T-Cell Suppression By Src/ABL Kinase Inhibitors When Combined with Blinatumomab in Ph+ Acute Lymphoblastic Leukemia

Introduction: Targeted ABL kinase inhibitors (TKIs) have shown great activity in Ph+ Acute Lymphoblastic Leukemia (Ph+ ALL), however relapsed disease remains an unmet need. The bispecific antibody blinatumomab was recently approved as a single agent for use in patients with Ph+ ALL and there is much...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Blood 2018-11, Vol.132 (Supplement 1), p.2694-2694
Hauptverfasser: Leonard, Jessica, Kosaka, Yoko, Malla, Pavani, Hayes-Lattin, Brandon, Lamble, Adam J., Druker, Brian J., Tyner, Jeffrey W., Chang, Bill H., Lind, Evan F.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Introduction: Targeted ABL kinase inhibitors (TKIs) have shown great activity in Ph+ Acute Lymphoblastic Leukemia (Ph+ ALL), however relapsed disease remains an unmet need. The bispecific antibody blinatumomab was recently approved as a single agent for use in patients with Ph+ ALL and there is much interest in combining this with targeted therapies. Second generation ABL kinase inhibitors inhibit both Src and LYN in addition to ABL. This is of particular interest in Ph+ ALL as LYN is important for leukemogenesis. T cell receptor (TCR) signaling is also dependent upon Src family kinase activity, and Src inhibitors may impact the efficacy of immunotherapies reliant on native T cell function. We sought to investigate the in vitro effects of ABL specific vs dual Src/ABL kinases on blinatumomab efficacy in both healthy donor as well as primary patient samples. Methods: We isolated peripheral blood mononuclear cells (PBMC) via Ficoll-Hypaque gradient from five healthy donors as well as from two patients with de novo and one patient with relapsed Ph+ ALL who harbored a T315I mutation. PBMC were labeled with CellTrace Violet and cultured for 5 days with no stimulation, blinatumomab, or blinatumomab in combination with imatinib, dasatinib, ponatinib or nilotinib at varying concentrations. Immunophenotyping was performed using multi-parameter flow cytometry for the following cell surface markers: CD45, CD3, CD4, CD8, CD56, and CD19. Blinatumomab efficacy was assessed by comparing the numbers of CD19+ / CD3- cells in untreated samples to those that had been treated with blinatumomab in the presence or absence of TKIs. Cell division of T cells was measured by CellTrace Violet dilution. Cytokine production was assessed via LEGENDplex Human Th Cytokine Panel. Levels of total Src, phospho-Src, total LCK and phospho-LCK were assessed via immunoblot. Results: After 5 days of exposure, blinatumomab led to T-cell proliferation in both healthy donor and patient PBMCs. Proliferation was observed in both CD8+ and CD4+ T cell subsets, although the effect was more pronounced in CD8+ cells. T cell proliferation, however, was completely suppressed by either dasatinib or ponatinib at nanomolar concentrations. This effect was far less pronounced with the ABL kinase inhibitors imatinib and nilotinib. Treatment of PBMCs with blinatumomab led to increased production of the cytokines IFN-g, IL-17-a and IL-22 in patient samples and healthy donors, while levels of IL-6 were increased in t
ISSN:0006-4971
1528-0020
DOI:10.1182/blood-2018-99-119301