CPSF1-Mediated Acute Myeloid Leukemia Fusion 3'UTR Alternation Is a Potential Therapeutic Target

Alternative polyadenylation (APA) can alter the three prime untranslated region (3'UTR) length of mRNAs, crucial for regulating mRNA metabolism and gene expression. Despite the prevalence of APA post-transcriptional regulation in cancers, changes in 3'UTR length by APA and its contribution...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Blood 2018-11, Vol.132 (Supplement 1), p.885-885
Hauptverfasser: Shima, Takahiro, Davis, Amanda G, Johnson, Daniel T, Kochi, Yu, Miyauchi, Sayuri, Stoner, Samuel A, Yuda, Junichiro, Miyamoto, Toshihiro, Zhou, Jie-Hua, Ball, Edward D., Akashi, Koichi, Zhang, Dong-Er
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Alternative polyadenylation (APA) can alter the three prime untranslated region (3'UTR) length of mRNAs, crucial for regulating mRNA metabolism and gene expression. Despite the prevalence of APA post-transcriptional regulation in cancers, changes in 3'UTR length by APA and its contribution to leukemia development have not been thoroughly studied. In this study, we demonstrated the significance of APA of leukemic fusion genes in acute myelogenous leukemia (AML) development. T(8;21) is the most common chromosomal abnormality in AML and encodes the AML1-ETO (AE) fusion gene. The AE 3'UTR has a full length of 5.2kb that contains 4 canonical polyadenylation sites (PAS), such that APA can result in several mRNA isoforms with varying 3'UTR lengths. However, RNA-seq and absolute quantification qPCR revealed that AE mainly uses 2 PAS: 5.2kb (long 3'UTR) and 3.7kb (short 3'UTR). Moreover, the AE short 3'UTR is the major isoform in both t(8;21) AML primary patients and cell lines. Based on these findings, we next hypothesize that changes in PAS usage and thus AE 3'UTR length, can modulate fusion gene expression. The single cell based dynamic array revealed that AE+ non-leukemic differentiated cells coexisted with AML blasts in the diagnostic bone marrow and these non-leukemic AE+ cells expressed much lower AE compared to AML blasts (monocytes, 0.19-fold and granulocytes, 0.11-fold, p
ISSN:0006-4971
1528-0020
DOI:10.1182/blood-2018-99-119199