Clinical Characteristics of GNB1 and GNAS Mutations in an Unselected Cohort of 6,343 Patients with Hematologic Abnormalities

Genes encoding the alpha (GNAS) and beta (GNB1) subunits of the heterotrimeric G-protein complex are recurrently mutated in myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML). Alterations in G-protein coupled receptors can affect signaling via the PI3K/AKT/mTOR and RAS/MAPK pathways, su...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Blood 2018-11, Vol.132 (Supplement 1), p.1819-1819
Hauptverfasser: Vedula, Rahul S., Luskin, Marlise R., Copson, Kevin, Kumari, Priti, Charles, Anne, Kim, Annette S., Morgan, Elizabeth A, Abel, Gregory A., Stone, Richard M., Lane, Andrew A., Lindsley, R. Coleman
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Genes encoding the alpha (GNAS) and beta (GNB1) subunits of the heterotrimeric G-protein complex are recurrently mutated in myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML). Alterations in G-protein coupled receptors can affect signaling via the PI3K/AKT/mTOR and RAS/MAPK pathways, suggesting that GNB1/GNAS mutations may function similarly to mutations in RAS and tyrosine kinases in myeloid disease progression. However, unlike RAS mutations, GNB1/GNAS mutations are among the most commonly affected genes in clonal hematopoiesis of indeterminate potential (CHIP), suggestive of a distinct functional role in myeloid disease initiation. We evaluated 6343 unique patients who received gene panel sequencing at our institution as part of a diagnostic evaluation of known or suspected hematologic malignancy. We identified 68 patients that had at least 1 sample with a mutation in GNB1 (N =42), GNAS (N=24) or both (N=2) (Figure 1). Twenty-six patients had multiple samples (range 2-10) obtained at serial timepoints during the course of progression and treatment. GNB1 mutations affected codon 57 (K57E/M/N/T) in 38 out of 42 cases; the remaining were G53E, D76G, I81V, and K89R. GNAS mutations affected codon 201 (R201H/C) in 23 out of 24 cases. Forty patients had active myeloid neoplasms [AML (N=10), MDS (N=13), MPN (N=11), MDS/MPN (N=5), BPDCN (N=1)]. The distribution of myeloid diagnoses was similar among patients with GNB1 or GNAS mutations. Analysis of serial samples showed that GNB1/GNAS mutations were frequently acquired at the time of leukemic transformation and clinical progression. Among 5 patients with secondary AML, 2 patients acquired GNB1/GNAS mutations at the time of transformation from MDS to AML, and 3 patients were found to have GNB1/GNAS mutations in high-risk MDS prior to subsequent transformation to AML. After induction chemotherapy for AML, two patients had expanded or newly acquired GNB1 mutations at time of treatment failure. Notably, 15 out of the 40 (37.5%) patients with active myeloid disease had co-mutations in the MPN-associated genes JAK2, CALR, and MPL. Eleven of these patients had a clinical diagnosis of MPN, including myelofibrosis (n=5), essential thrombocytosis (n=3), polycythemia vera (n=2), and systemic mastocytosis (n=1). In the context of underlying oncogenic kinase alterations including JAK2 V617F, GNB1 mutations have been shown to promote resistance to kinase inhibitors in vitro. Fourteen out of fifteen patients had no
ISSN:0006-4971
1528-0020
DOI:10.1182/blood-2018-99-118746