BZLF1-DEC205 Fusion Protein Enhances EBV-Protective Immunity in a Spontaneous Model of EBV-Driven Lymphoproliferative Disease

Epstein-Barr virus (EBV) is a human herpes virus that infects over 90% of the world's population and is linked with cancer development. In immune-competent individuals, EBV-infection is controlled by a highly efficient virus-specific T cell response. Following primary infection, the virus achie...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Blood 2018-11, Vol.132 (Supplement 1), p.342-342
Hauptverfasser: Ahmed, Elshafa Hassan, Brooks, Eric, Sloan, Shelby, Schlotter, Sarah, Jeney, Frankie, Mao, Charlene, Shindiapina, Polina, Shire, Salma, Hale, Claire, Das, Manjusri, Prouty, Alexander, Caligiuri, Michael A., Baiocchi, Robert A
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Epstein-Barr virus (EBV) is a human herpes virus that infects over 90% of the world's population and is linked with cancer development. In immune-competent individuals, EBV-infection is controlled by a highly efficient virus-specific T cell response. Following primary infection, the virus achieves lifelong persistence within the human host. Risk of EBV-driven cancers increases with immune suppression (IS). Solid organ transplant recipients receive IS medications to prevent graft rejection and are at highest risk of developing EBV-associated lymphomas known as post-transplant lymphoproliferative disease (PTLD). PTLD represents a serious complication of organ transplantation, associated with poor prognosis. Currently, no standard approach for prevention or treatment exists. Reducing the level of IS medication may control PTLD but often leads to graft-rejection. In order to promote long-term protection from EBV-driven cancers, we have developed a vaccine to bolster EBV-specific immunity by targeting the EBV immediate early protein, BZLF1. BZLF1 initiates the activation of lytic stage in EBV-infected cells and promotes B-cell transformation. Work by our group has shown BZLF1-specific T cell expansion following reduction in IS medications correlates with PTLD tumor regression and improved patient survival. Here we specifically delivered the protein (BZLF1) to dendritic cells (DCs) through its endocytic receptor DEC205. DCs were generated from HLA-B8+ donor monocytes incubated with interleukin-4 (IL4) and granulocyte-macrophage colony-stimulating factor (GM-CSF). Mature DCs were then loaded with DEC205-BZLF1 fusion protein or control protein (DEC205-Human Chorionic Gonadotropin (DEC205-HCG)). Antigen-loaded DCs were co-cultured with autologous peripheral blood mononuclear cells (PBMCs) in the presence of IL-2 for 10 days. Cells were analyzed by flow cytometry using HLA-tetramers to detect and quantify antigen-specific cytotoxic T leukocyte (CTL) response. To test the EBV vaccine in-vivo, we utilized a human-murine chimeric model of EBV-driven lymphoproliferative disease (EBV-LPD). Severe combined immune deficient (SCID) mice were engrafted with PBMCs from EBV+ donors (Hu-PBL-SCID model). The spontaneous EBV-LPD that develops in this model is comprised of human CD20+, EBV+ lymphoblasts that closely resembles PTLD. Mice were immunized with DCs loaded with DEC205-BZLF1 or DEC205-HCG at the time of PBMC transplant and received booster doses at day 14 and 28. Splenoc
ISSN:0006-4971
1528-0020
DOI:10.1182/blood-2018-99-117837