Knockout Tumor Microenvironment HO-1 Neutralizes Myeloid-Derived Suppressor Cells and Enhances the Antitumor Effect of PD-1 Inhibition in Murine Models of Acute Myeloid Leukemia
Background/Aims: Myeloid-derived suppressor cells (MDSCs) has been shown to be involved in tumor immune escape mechanisms and B cell-specific immunity in Acute myeloid leukemia (AML) patients. In our previous study shown that HO-1 protein have immunomodulatory activity including targeting of immune...
Gespeichert in:
Veröffentlicht in: | Blood 2018-11, Vol.132 (Supplement 1), p.2782-2782 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Background/Aims: Myeloid-derived suppressor cells (MDSCs) has been shown to be involved in tumor immune escape mechanisms and B cell-specific immunity in Acute myeloid leukemia (AML) patients. In our previous study shown that HO-1 protein have immunomodulatory activity including targeting of immune suppressor cells in the tumor microenvironment. Thus, we decided to assess whether HO-1 could enhance anti-PD-1 treatment and investigate those alterations in the immunosuppressive tumor microenvironment that contribute to the combined antitumor activity.
Method: We utilized C57/BL6 (HO-1 knockout) mouse were radiation with 6.5GY once in a row to repress residual immunity. Malignant tumor HL-60 cells respectively (1×107 cells) per animal were injected subcutaneously into the right abdomen. The xenograft mouse models of AML were euthanised on the 14th day after treatment with a PD-1 inhibitor once a day (20 mg/kg). The tumor volumes were measured and calculated by ruler. Survival curve of individual groups was evaluated from the first day of treatment until death using Kaplan-Meier curves.
Results: HO-1 gene knockout enhanced the antitumor effect of PD-1 inhibition in xenograft mouse models of AML by reducing tumor growth and increasing survival. HO-1 gene knockout inhibited the immunosuppressive function of both polymorphonuclear (PMN)- and monocytic-myeloid derived suppressor cell (M-MDSC) populations. Analysis of MDSC response to HO-1 gene knockout revealed significantly reduced arginase-1, iNOS, and COX-2 levels, suggesting potential mechanisms for the altered function. We also observed significant alterations in cytokine/chemokine release in vivo with a shift toward a tumor-suppressive microenvironment.
Conclusions: Our results demonstrate that HO-1 gene knockout enhances the antitumor effect of PD-1 targeting through functional inhibition of MDSCs and a transition away from an immune-suppressive tumor microenvironment.
[Key words] HO-1 gene knockout; PD-1 inhibitor; tumor microenvironment; MDSCs; AML
No relevant conflicts of interest to declare. |
---|---|
ISSN: | 0006-4971 1528-0020 |
DOI: | 10.1182/blood-2018-99-117808 |