Proteometabolomics of Melphalan Resistance in Multiple Myeloma

Although advancements in therapeutic regimens for treating multiple myeloma (MM) have prolonged patient survival, the disease remains incurable. Several classes of drugs have contributed to these improvements, such as proteasome inhibitors, immunomodulators, deacetylase inhibitors, monoclonal antibo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Blood 2018-11, Vol.132 (Supplement 1), p.5619-5619
Hauptverfasser: Koomen, David C., Guingab, Joy D., Oliveira, Paula S., Fang, Bin, Liu, Min, Welsh, Eric A., Meads, Mark B., Nguyen, Tuan, Meke, Laurel E., Eschrich, Steven A., Garrett, Timothy J., Koomen, John M., Shain, Kenneth H.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Although advancements in therapeutic regimens for treating multiple myeloma (MM) have prolonged patient survival, the disease remains incurable. Several classes of drugs have contributed to these improvements, such as proteasome inhibitors, immunomodulators, deacetylase inhibitors, monoclonal antibodies, and alkylating agents including melphalan. An expanded arsenal of diverse chemotherapy targets has improved patient care significantly, yet we still lack sufficient knowledge of how cellular metabolism and drug processing can contribute to drug resistance. To address this issue, we utilize cell line models to simulate naïve and drug resistant states, which identify drug modifications, endogenous metabolites, proteins, and acute metabolic profile alterations associated with therapeutic escape. Here, we specifically focus on melphalan; an alkylating agent that forms DNA interstrand crosslinks, inhibits cell division, and leads to cell death through apoptosis (Povirk & Shuker. Mutat. Res. 1994, 318, 205). Melphalan remains a critical component of high dose therapy in the context of stem cell transplant and induction therapy in transplant ineligible patients outside the US. Ineffectiveness of alkylating agents remains a critical problem and serves as an excellent model for investigation of cellular metabolism and its contribution to drug resistance. Two parental MM cell lines (8226 & U266) were obtained from ATCC and resistant derivatives of each cell line (8226-LR5 & U266-LR6) were selected after chronic drug exposure. To assess mechanisms of melphalan resistance, we use liquid chromatography-mass spectrometry-based metabolomics and proteomics approaches, including studies of drug metabolism, untargeted metabolomics, and activity based protein profiling (ABPP). Drug metabolism monitors the intracellular and extracellular drug modifications over a 24-hour period after acute treatment. Untargeted metabolomics is used to compare the steady state endogenous intracellular metabolites of naïve and drug resistant cells. Differences in endogenous metabolites between naïve and drug resistant cell lines are also examined in the acute treatment dataset. ABPP utilizes desthiobiotinylating probes to enrich for ATP-utilizing enzymes, which are identified and quantified to enable comparison. We initially compared acute melphalan treatment in drug naive and resistant isogenic cell line pairs. Predictably, melphalan was converted into monohydroxylated and dihydroxylated metab
ISSN:0006-4971
1528-0020
DOI:10.1182/blood-2018-99-117747