Highly Efficient Editing of the Beta-Globin Gene in Patient Derived Hematopoietic Stem and Progenitor Cells to Treat Sickle Cell Disease

Sickle cell disease (SCD) is an inherited blood disorder associated with a debilitating chronic illness. SCD is caused by a point mutation in the β-globin gene (HBB). A single nucleotide substitution converts glutamic acid to a valine that leads to the production of sickle hemoglobin (HbS), which im...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Blood 2018-11, Vol.132 (Supplement 1), p.2192-2192
Hauptverfasser: Park, So Hyun, Lee, Ciaran M, Dever, Daniel P., Davis, Timothy H, Camarena, Joab, Zhang, Yankai, Porteus, Matthew, Sheehan, Vivian A, Bao, Gang
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Sickle cell disease (SCD) is an inherited blood disorder associated with a debilitating chronic illness. SCD is caused by a point mutation in the β-globin gene (HBB). A single nucleotide substitution converts glutamic acid to a valine that leads to the production of sickle hemoglobin (HbS), which impairs the function of red blood cells. Here we show that delivery of Streptococcus pyogenes (Sp) Cas9 protein and CRISPR guide RNA as a ribonucleoprotein complex (RNP) together with a short single-stranded DNA donor (ssODN) template into CD34+ hematopoietic stem and progenitor cells (HSPCs) from SCD patients' bone marrow (BM) was able to correct the sickling HBB mutation, with up to 33% homology directed repair (HDR) without selection. Further, CRISPR/Cas9 cutting of HBB in SCD HSPCs induced gene conversion between the HBB sequences in the vicinity of the target locus and the homologous region in δ-globin gene (HBD), with up to 4.4% additional gene correction mediated by the HBD conversion in cells with Cas9 cutting only. The erythrocytes derived from gene-edited cells showed a marked reduction of the HbS level, increased expression of normal adult hemoglobin (HbA), and a complete loss of cell sickling, demonstrating the potential in curing SCD. We performed extensive off-target analysis of gene-edited SCD HSPCs using the in-silico prediction tool COSMID and unbiased, genome-wide assay Guide-Seq, revealing a gross intrachromosomal rearrangement event between the on- and off-target Cas9 cutting sites. We used a droplet digital PCR assay to quantify deletion and inversion events from Day 2 to Day 12 after RNP delivery, and found that large chromosomal deletion decreased from 1.8% to 0.2%, while chromosomal inversion maintained at 3.3%. We demonstrated that the use of high-fidelity SpCas9 (HiFi Cas9 by IDT) significantly reduced off-target effects and completely eliminated the intrachromosome rearrangement events, while maintaining the same level of on-target gene editing, leading to high-efficiency gene correction with increased specificity. In order to determine if gene-corrected SCD HSPCs retain the ability to engraft, CD34+ cells from the BM of SCD patients were treated with Cas9/gRNA RNP and ssODN donor for HBB gene correction, cryopreserved at Day 2 post genome editing, then intravenously transplanted into NSG mice shortly after thawing. These mice were euthanized at Week 16 after transplantation, and the BM was harvested to determine the engraftment potentia
ISSN:0006-4971
1528-0020
DOI:10.1182/blood-2018-99-117371