Pluripotent Cell-Derived Off-the-Shelf TCR-Less CAR-Targeted Cytotoxic T Cell Therapeutic for the Allogeneic Treatment of B Cell Malignancies
▪ The advent of off-the-shelf chimeric antigen receptor (CAR) T cell therapeutics is widely recognized to be a major potential advancement for the treatment of cancer. Several obstacles currently hamper the broad use of CAR T cells, including the inherent variability and cost of manufacturing of aut...
Gespeichert in:
Veröffentlicht in: | Blood 2018-11, Vol.132 (Supplement 1), p.4546-4546 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | ▪
The advent of off-the-shelf chimeric antigen receptor (CAR) T cell therapeutics is widely recognized to be a major potential advancement for the treatment of cancer. Several obstacles currently hamper the broad use of CAR T cells, including the inherent variability and cost of manufacturing of autologous cellular populations, the absolute requirement for precise genetic editing in the allogeneic setting, and the challenge to keep pace with clonal heterogeneity. Here we present pre-clinical data for FT819, a first-of-kind off-the-shelf human induced pluripotent stem cell (hiPSC)-derived CAR T cell product. FT819 is defined by the precise genetic engineering of multiple targeting events at the single cell level to create a clonal master iPSC line. The engineered features include the targeted integration of a novel, modified CD19 CAR into the T cell receptor α (TRAC) locus to provide antigen specificity and enhanced efficacy while eliminating the possibility of graft versus host disease (GvHD), and the expression of a high-affinity, non-cleavable form of CD16 (hnCD16) to deliver an adjustable system to address tumor antigen escape.
Through a proprietary cellular reprogramming platform, peripheral blood derived T cells are converted to hiPSCs, engineered to contain the modified CD19 CAR targeted into the TRAC locus and hnCD16, and clonally selected to create a master hiPSC line (TRAC-TiPSC, FT819). Molecular characterization of the TRAC-TiPSC master cell line by 5‘ junction, 3‘ junction and internal sequence PCR confirmed homology directed repair and bi-allelic targeting of the CD19 CAR into the TRAC locus. The origin of the clonal master cell bank was confirmed to be a TCRαβ T cell by PCR-mediated detection of TCRδ locus deletion and methyl-seq analysis of the TCRα locus. Flow cytometric analysis demonstrated the maintenance of a uniform population of hiPSCs (>95% SSEA4/TRA-1-81/OCT4/NANOG) and expression of hnCD16 transgene (>95% CD16).
Utilizing our stage-specific T cell differentiation protocol, we demonstrate that the TRAC-TiPSCs yield TRAC-iT cells with uniform expression of the CAR (>95%), complete elimination of TCR surface expression and clinically enabling expansion through the manufacturing process (>50,000 fold). To confirm the lack of alloreactivity conferred by the deletion of endogenous TCR expression, mixed lymphocyte reactions were performed using TRAC-iT, primary TCR+ T cells and primary TCR+CAR+ T cells as responders and HLA-mismatched per |
---|---|
ISSN: | 0006-4971 1528-0020 |
DOI: | 10.1182/blood-2018-99-116843 |