Comprehensive Genomic Analysis of IDH Inhibitor-Treated AML Samples Delineates Molecular Mechanisms of Differentiation and Heterogeneous Patterns of Acquired Resistance

Allosteric inhibitors of mutant IDH1 or IDH2 induce differentiation of IDH-mutant AML myeloblasts, which in some patients (pts) can lead to a life-threatening differentiation syndrome (DS). The in vivo mechanism of how IDH inhibitors induce differentiation and occasionally DS is not fully understood...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Blood 2018-11, Vol.132 (Supplement 1), p.441-441
Hauptverfasser: Wang, Feng, Morita, Kiyomi, DiNardo, Courtney D., Patel, Keyur, MacBeth, Kyle, Tosolini, Alessandra, Frattini, Mark G., Matthews, Jairo, Little, Latasha, Gumbs, Curtis, Tippen, Samantha, Song, Xingzhi, Zhang, Jianhua, Thompson, Erika, Kadia, Tapan M., Garcia-Manero, Guillermo, Jabbour, Elias J., Ravandi, Farhad, Konopleva, Marina Y., Kantarjian, Hagop M., Futreal, Andrew, Takahashi, Koichi
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Allosteric inhibitors of mutant IDH1 or IDH2 induce differentiation of IDH-mutant AML myeloblasts, which in some patients (pts) can lead to a life-threatening differentiation syndrome (DS). The in vivo mechanism of how IDH inhibitors induce differentiation and occasionally DS is not fully understood. Furthermore, responders to the inhibitors often lose the differentiation effect, after median of 7 months. Although a recent study identified secondary mutations in the dimer-interface of IDH1/2 as a mechanism for acquired IDH-inhibitor resistance, given the rarity of this event, it is unlikely to represent the primary mechanism in the majority of pts. We conducted a comprehensive genomic analysis (DNA sequencing, single-cell DNA sequencing, RNA sequencing and cytosine methylation array) on longitudinally collected bone marrow specimens from IDH1/2-mutant AML pts treated with one of the IDH1/2 inhibitors (ivosidenib, enasidenib, IDH305 or AG881). In total, 146 samples from 39 pts collected at different time points (median 4 [IQR 3-5] samples per patient) were analyzed. 24 pts were IDH1-mutated receiving IDH1 inhibitor and 15 were IDH2-mutated receiving IDH2 inhibitor. 29 pts responded (CR, CRi, CRp or MLFS) and 10 had no response to the inhibitors. 8 of 29 responders developed DS. 22 of 29 responders relapsed after the median of 5 months. Cytosine methylation analysis revealed significant decrease in global methylation at response than baseline (mean beta value 0.54 at baseline vs. 0.45 at response, P < 0.001). This corroborated with a decrease in serum 2HG level, supporting the role of IDH inhibitors in reversing CpG island methylator phenotype (CIMP) likely through TET restoration. Motif enrichment analysis of differentially methylated promoter regions showed significant de-methylation of PU.1(SPI1) and C/EBP binding motifs at response. Consistent with this, RNA sequencing revealed that PU.1 and C/EBP target genes such as CSF2RA, CSF3R, IL34, TREM2, IL6R, CEBPE, GFI1, and KLF5 had significant upregulation at response. Expression of PU.1 itself was also significantly up-regulated upon response, along with other key hematopoietic differentiation genes and pathways such as GM-CSF, IL8-CXCR1 and IL3 pathways. Pts who developed DS had significantly higher upregulation of PU.1 and GM-CSF pathway compared to other DS-free responders, implicating the potential activation of these pathways in the mechanism of DS. At relapse, these pathways that mediated differentiati
ISSN:0006-4971
1528-0020
DOI:10.1182/blood-2018-99-116383