Combining Next Generation Proteomics Platforms with Drug Sensitivity Resistance Testing Allows Identification of Physiologically Distinct Sub-Clones That Can Inform Therapeutic and Drug Development Strategies
Introduction: A hallmark of Multiple Myeloma (MM) is the sequel development of drug resistant phenotypes, which may be present initially or emerge during the course of treatment. These drug resistant phenotypes reflect the intra-tumor and inter-patient heterogeneity of this cancer. Most MM cells are...
Gespeichert in:
Veröffentlicht in: | Blood 2018-11, Vol.132 (Supplement 1), p.1901-1901 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Introduction: A hallmark of Multiple Myeloma (MM) is the sequel development of drug resistant phenotypes, which may be present initially or emerge during the course of treatment. These drug resistant phenotypes reflect the intra-tumor and inter-patient heterogeneity of this cancer. Most MM cells are sensitive to proteasome inhibitors (PIs), which have become the standard of care in the treatment of newly diagnosed and relapsed MM. However, resistance develops (intrinsic/acquired). Although several novel drugs have recently been approved or are in development for MM, there are few molecular indicators to guide treatment selection. To address this limitation we have combined mass spectrometry-based proteomics analysis together with ex vivo drug response profiles and clinical outcome to elucidate a best possible accurate phenotype of the resistant sub-clones, thus yielding a theranostic profile that will inform therapeutic and drug development strategies.
Methods: We performed mass spectrometry-based proteomics analysis on plasma cells isolated from 38 adult MM patient bone marrow aspirates (CD138+). Samples were obtained at diagnosis or prior to commencing therapy. The participating subjects gave written informed consent in accordance with the Declaration of Helsinki that was approved by local ethics committees. For the proteomics analysis, peptides were purified using the filtered aided sample preparation (FASP) method. Subsequently, samples were prepared for label-free liquid chromatography mass spectrometry (LC-MS/MS) using a Thermo Scientific Q-Exactive MS mass spectrometer. Proteins were analysed using the MaxQuant and Perseus software for mass-spectrometry (MS)-based proteomics data analysis, UniProtKB-Swiss Prot database and KEGG Pathway database. In parallel, we undertook a comprehensive functional strategy to directly determine the drug dependency of myeloma plasma cells based on ex vivo drug sensitivity and resistance testing (DSRT)as previously described (1).
Results: Our initial proteomic analysis was generated by examining MM patient plasma cells, grouped based on DSRT to 142 anticancer drugs including standard of care and investigational drugs. Each of the 142 drugs was tested over a 10,000-fold concentration range, allowing for the establishment of accurate dose-response curves for each drug in each patient. MM patients were stratified into four distinct subgroups as follows: highly sensitive (Group I), sensitive (Group II), resistant (Group I |
---|---|
ISSN: | 0006-4971 1528-0020 |
DOI: | 10.1182/blood-2018-99-115910 |