Adenosine A2B Receptor Controls Erythroid Lineage Commitment in Stress Erythropoiesis By Promoting Metabolic Reprogramming

Insufficient oxygen availability under stress conditions including hypoxia and anemia is a major stimulus for stress erythropoiesis. Adenosine is known to be induced under hypoxia and energy depletion. Increased adenosine signaling via its specific receptors regulates multiple cellular functions inc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Blood 2018-11, Vol.132 (Supplement 1), p.845-845
Hauptverfasser: Liu, Hong, Liu, Rongrong, Nemkov, Travis, Couturier, Jacob, Liang, Long, Song, Anren, Zhao, Shushan, Sun, Kaiqi, Adebiyi, Morayo, Wen, Yuan Edward, Wen, Alexander, Liu, Jing, Kellems, Rodney, D'Alessandro, Angelo, Blackburn, Michael, Xia, Yang
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Insufficient oxygen availability under stress conditions including hypoxia and anemia is a major stimulus for stress erythropoiesis. Adenosine is known to be induced under hypoxia and energy depletion. Increased adenosine signaling via its specific receptors regulates multiple cellular functions including anti-inflamation, anti-vascular leakage and vasodilation. However, its function in stress erythropoiesis and underlying mechanisms are enigmatic. Among four adenosine receptors, we report that adenosine A2B receptor (ADORA2B) is expressed at a significant higher level in megakaryocyte-erythroid progenitor (MEP) compared to common pluoripotent progenitors (CMP) or granulocyte-erythroid progenitor (GMP) in undifferentiated human CD34+. To determine the function role of ADORA2B in stress erythropoiesis, we generated erythroid Adora2b specific knockouts by crossing Adora2bf/f mice with EpoR-Cre+ mice. First, we demonstrated that EpoR specifically ablated ADORA2B gene only in MEP but not in CMP or GMP lineages. Next, we challenged EpoR-Cre+ mice (control) and Adora2bf/fEpoR-Cre+ mice (erythroid specific ablation of Adora2b genes) with hypoxia. We discovered that genetic deletion of ADORA2B at MEP stage blocked erythroid vs myeloid commitment under hypoxia-induced stress erythropoiesis. Further metabolic profiling revealed that ADORA2B activation regulated erythroid lineage commitment by promoting glucose uptake and erythroid metabolic reprogramming channelling glucose metabolism toward the pentose phosphate pathway (PPP) rather than glycolysis to generate more ribose phosphate as well as facilitate glutamine uptake to serve as a nitrogen donor for de novo nucleotide biosynthesis. Meanwhile, ADORA2B-stimulated glutaminolysis increased TCA cycle intermediates and thus increased energy production under stress erythropoiesis. We further demonstrated that ADORA2B on MEP is also important for erythroid commitment in response to PHZ-induced mouse model. Followup studies revealed that HIF-1a is induced in erythroid progenitors in a ADORA2B-dependent manner and ablation of HIF-1a only in MEP but not in CMP or GMP attenuated erythroid lineage commitment in both hypoxia-induced and anemia-induced stress erythropoiesis mouse models. Moreover, we showed that ADORA2B-triggered metabolic reprogramming depended on HIF-1a-preferentially upregulated gene expression of transporters for glucose and glutamine and key enyzmes of PPP and glutaminolysis over glycolytic enzymes. Simil
ISSN:0006-4971
1528-0020
DOI:10.1182/blood-2018-99-114075