Late-Stage Preclinical Characterization of Switchable CD123-Specific CAR-T for Treatment of Acute Leukemia

▪ Application of autologous T cells genetically engineered to express CD19-specific chimeric antigen receptors (CAR-T) is highly effective in the treatment of B cell malignancies. To this date, application of CAR-T therapy beyond CD19 remains challenging due to the inability to control CAR-T reactiv...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Blood 2018-11, Vol.132 (Supplement 1), p.964-964
Hauptverfasser: Loff, Simon, Meyer, Jan-Erik, Dietrich, Josephine, Spehr, Johannes, Julia, Riewaldt, von Bonin, Malte, Gründer, Cordula, Franke, Kristin, Feldmann, Anja, Bachmann, Michael, Ehninger, Gerhard, Ehninger, Armin, Cartellieri, Marc
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:▪ Application of autologous T cells genetically engineered to express CD19-specific chimeric antigen receptors (CAR-T) is highly effective in the treatment of B cell malignancies. To this date, application of CAR-T therapy beyond CD19 remains challenging due to the inability to control CAR-T reactivity in patients and the lack of tumor-associated antigens exclusively expressed by malignant cells. The interleukin-3 receptor alpha chain (CD123) is a promising immunotherapeutic target and associated with leukemia-initiating compartments in myeloid- or lymphoid derived diseases. However, in contrast to CD19, CD123 is a precarious target due to its prevalent expression on healthy hematopoietic stem and progenitor cells (HSPC) as well as endothelial cells. Thus, CAR-T lacking any fine-tuned control mechanisms are at risk to cause life threatening toxicities or can only act as bridging therapy to an allogeneic stem cell transplantation. To extend application of CAR-T therapy and safely redirect CAR-engineered T cells to challenging targets such as CD123, a switch-controllable universal CAR-T platform (UniCAR) was recently introduced. The UniCAR system consists of two components: (1) a non-reactive inducible second generation CAR with CD28/CD3ζ stimulation for an inert manipulation of T cells (UniCAR-T) and (2) soluble targeting modules (TM) enabling UniCAR-T reactivity in an antigen-specific manner. Here we provide late stage pre-clinical data for UniCAR-T in combination with a CD123-specific TM (TM123) for treatment of acute leukemia. Primary patient-derived CD123-positive leukemic blasts were efficiently eradicated by TM123-redirected clinical-grade manufactured UniCAR-T in vitro and in vivo. Activation, cytolytic responses and cytokine release were proven to be strictly switch-controlled. Moreover, anti-leukemic responses of UniCAR-T were demonstrated to be comparable to conventional CD123-specific CAR-T in vitro. In contrast to conventional CD123 CAR-T, TM123-redirected UniCAR-T discriminate between CD123high malignant cells and CD123low healthy cells with negligible toxicity towards HSPC in vivo. As 4-1BB mediated co-stimulation is known to enhance CAR-T activity in vivo, a novel CD123-specific targeting module bearing a covalently bound trimeric 4-1BB ligand (4-1BBL) was developed and characterized for co-stimulation at the leukemic site in trans. Specific binding of TM123-4-1BBL was demonstrated against native 4-1BB as well as CD123-positive leukemic blast
ISSN:0006-4971
1528-0020
DOI:10.1182/blood-2018-99-113288