Elevated Axicabtagene Ciloleucel (CAR-19) Expansion By Immunophenotyping Is Associated with Toxicity in Diffuse Large B-Cell Lymphoma

▪ Background: Axicabtagene ciloleucel (axi-cel), an autologous anti-CD19 chimeric antigen receptor (CAR-T), showed significant clinical responses in patients with relapsed-refractory large-B cell lymphomas in the Zuma-1 trial (Neelapu et al, NEJM 2017). Zuma-1 analysis showed blood CAR-T cell expans...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Blood 2018-11, Vol.132 (Supplement 1), p.576-576
Hauptverfasser: Spiegel, Jay Y., Sahaf, Bita, Hossain, Nasheed, Frank, Matthew J., Claire, Gursharan, Abramian, Matthew, Latchford, Theresa, Villa, Bertha, Cancilla, Juancarlos, Oak, Jean, Natkunam, Yasodha, Long, Steven R., Arai, Sally, Johnston, Laura J, Lowsky, Robert, Meyer, Everett H, Muffly, Lori S, Negrin, Robert S., Rezvani, Andrew R, Shizuru, Judith A, Weng, Wen-Kai, Kong, Katherine A., Mackall, Crystal L., Miklos, David B.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:▪ Background: Axicabtagene ciloleucel (axi-cel), an autologous anti-CD19 chimeric antigen receptor (CAR-T), showed significant clinical responses in patients with relapsed-refractory large-B cell lymphomas in the Zuma-1 trial (Neelapu et al, NEJM 2017). Zuma-1 analysis showed blood CAR-T cell expansion was associated with clinical response and toxicity. Herein, we report on 25 patients treated with commercial axi-cel and describe CAR-T expansion by immunophenotyping and its correlation with clinical outcomes. Methods: Twenty-five patients with aggressive lymphoma consecutively apheresed at Stanford University prior to June 30, 2018 were studied on an IRB approved biorepository-clinical outcome protocol. Cytokine release syndrome (CRS) was graded by Lee criteria (Blood 2014) and neurotoxicity according to Neelapu et. al (Nat. Rev. Clin. Onc. 2017). CAR-T cell immunophenotyping was assessed by peripheral blood flow cytometry on days 7, 14, 21 and 28 and then monthly. CAR-T cells were identified by gating on singlet+, live+, CD45+, CD14-, CD3+, anti-CD19-specific CAR mAb (clone 136.20.1; Jena et. al Plos 2013) and characterized as either CD4+ or CD8+. Results: Of 25 apheresed patients, 3 patients died prior to axi-cel infusion due to progressive lymphoma. Of 22 infused patients, 14 (64%) would have been eligible for the Zuma-1 trial. Reasons for ineligibility included symptomatic DVT (n=2), renal insufficiency (n=1), transaminitis (n=1), thrombocytopenia (n=1), MDS (n=1), pleural effusion (n=1) and 1 was ineligible by multiple criteria. Median time from initial clinic visit to infusion was 47 days (range 34-117); median time from apheresis to infusion was 22 days (range 19-38). Nine patients received bridging therapy prior to lymphodepletion chemotherapy (chemo = 4, radiation = 2, high dose dexamethasone = 3). Axi-cel infusion occurred in hospital and patients were followed expectantly for a minimum of 7 days or until adverse events resolved to
ISSN:0006-4971
1528-0020
DOI:10.1182/blood-2018-99-113261