Deep Immunoprofiling of the Bone Marrow Microenvironmental Changes Underlying the Multistep Progression of Multiple Myeloma

Introduction The multistep progression of multiple myeloma from a normal plasma cell to a system with the features of invasive cancer provides a unique opportunity to understand the co-evolution of the malignant clone within its microenvironment. Understanding these changes is becoming increasingly...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Blood 2018-11, Vol.132 (Supplement 1), p.243-243
Hauptverfasser: Young, Mary H, Danziger, Sam A, Fitch, Alison, Schmitz, Frank, Gockley, Jake, McConnell, Mark, Reiss, David, Copeland, Wilbert B., Johnson, Sarah K, Newhall, Katie, Hershberg, Robert, Foy, Teri, Ratushny, Alexander, Walker, Brian A, Dervan, Andrew, Morgan, Gareth
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Introduction The multistep progression of multiple myeloma from a normal plasma cell to a system with the features of invasive cancer provides a unique opportunity to understand the co-evolution of the malignant clone within its microenvironment. Understanding these changes is becoming increasingly important as we attempt to design early intervention strategies and to precisely leverage emerging immunotherapeutic modalities to prevent and treat disease progression. In this work, we used mass cytometry (CyTOF) to generate a high-resolution map of the BM microenvironment and how it changes during the transition from health through pre-malignancy to disease. This approach allows us to both understand microenvironmental patterns that correlate with rapid disease progression as well as to generate new hypotheses about permissive and protective immune-phenotypes that might reveal novel immunologic drug targets. Methods To understand the immunologic characteristics of monoclonal gammopathy of undetermined significance (MGUS), smoldering multiple myeloma (SMM), newly diagnosed multiple myeloma (NDMM) and relapsed-refractory multiple myeloma (RRMM), we profiled BM aspirates from 79 patients using mass cytometry by time of flight (CyTOF). Furthermore, we compared the BM compartment of pre-malignant, malignant, and relapsed disease states to the BM of healthy donors using a 37-marker pan-immune panel. In this panel, we used antibodies against several immune lineages, tumor antigens, and functional surface markers, including co-stimulatory and co-inhibitory receptors. Cell clusters defined by Citrus analysis of CyTOF data were combined into an evolutionarily optimized decision tree by evtree to identify cluster interactions that strongly partition patient samples. Results During MGUS, when the tumor plasma cells are
ISSN:0006-4971
1528-0020
DOI:10.1182/blood-2018-99-113042