MLL-Fusion Leukemia Dependence on MBNL1 Is Associated with Alternative Splicing of Oncogenic Proteins

Leukemia is the most common childhood cancer, and while outcomes for most children have improved significantly, the prognosis in infant leukemia remains dire. The majority of infant leukemia, either acute myeloid (AML) or acute lymphoid (ALL), is caused by reciprocal translocations of the MLL-gene....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Blood 2018-11, Vol.132 (Supplement 1), p.3883-3883
Hauptverfasser: Gurunathan, Arun, Itskovich, Lana S, Clark, Jason, Burwinkel, Matthew, Salomonis, Nathan, Venkatasubramanian, Meenakshi, Chetal, Kashish, Lee, Lynn, Kumar, Ashish R
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Leukemia is the most common childhood cancer, and while outcomes for most children have improved significantly, the prognosis in infant leukemia remains dire. The majority of infant leukemia, either acute myeloid (AML) or acute lymphoid (ALL), is caused by reciprocal translocations of the MLL-gene. Prior studies show that one of the most consistently overexpressed genes in these leukemias (compared to all other leukemias) is the RNA binding protein muscleblind-like 1 (MBNL1). We found that MBNL1 knockdown significantly impairs propagation of MLL-rearranged (MLLr) leukemic cells in vitro and in vivo using human cell lines and transformed murine cells. To further characterize the role of MBNL1 in acute leukemia, we performed shRNA knockdown experiments in MLLr and non-MLLr leukemia cell lines and in primary patient samples. While MBNL1 knockdown does also impair growth of non-MLLr leukemic cells, the effect is less pronounced. In a 5-day growth experiment MBNL1-knockdown MLLr cells (THP-1) displayed a median 71% reduced growth compared to controls, whereas non-MLLr cells (HL-60) displayed only a median 32% growth reduction (p=0.0001). Cells from two patients with MLLr AML (one with MLL-AF9 and one with MLL-AF10 fusion) underwent shNT (non-targeting) or shMBNL1 transduction.. Unsorted cells were transplanted into NSGS mice. Mice were observed until showing signs of distress and then analyzed for engraftment of human cells and abundance of transduced cells (venus-positive). In the shNT group there was robust persistence of transduced cells (7%-98% of human cells), whereas shMBNL1-transduced cells were not detected or comprised
ISSN:0006-4971
1528-0020
DOI:10.1182/blood-2018-99-112349